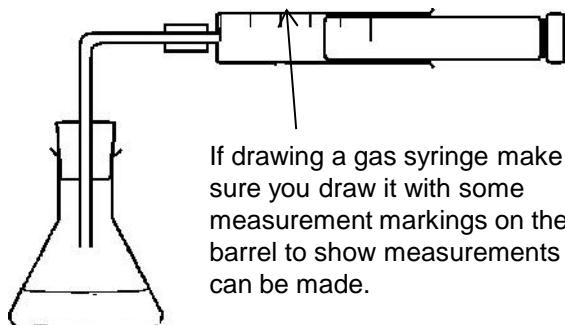
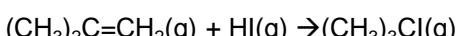

16. Kinetics II

The rate of reaction is defined as the **change in concentration** of a substance **in unit time**
Its usual unit is mol dm⁻³s⁻¹

When a graph of concentration of reactant is plotted vs time, the **gradient** of the curve is the rate of reaction.

The **initial rate** is the rate at the start of the reaction where it is fastest

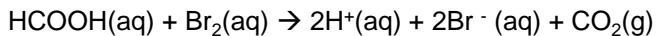
Reaction rates can be calculated from graphs of concentration of reactants **or** products

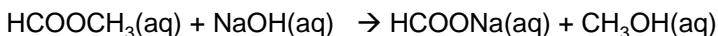
Techniques to investigate rates of reaction

There are several different methods for measuring reaction rates. Some reactions can be measured in several ways

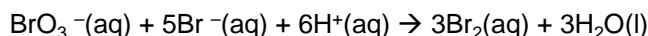
measurement of the change in volume of a gas


This works if there is a change in the number of moles of gas in the reaction. Using a gas syringe is a common way of following this.

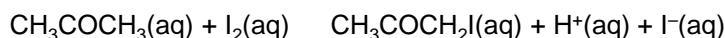
If drawing a gas syringe make sure you draw it with some measurement markings on the barrel to show measurements can be made.


Measurement of change of mass

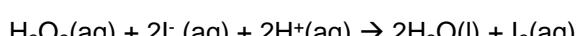
This works if there is a gas produced which is allowed to escape. Works better with heavy gases such as CO₂



Titrating samples of reaction mixture with acid, alkali, sodium thiosulphate etc

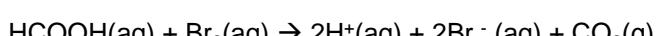

Small samples are removed from the reaction mixture, quenched (which stops the reaction) and the titrated with a suitable reagent.

The NaOH could be titrated with an acid


The H⁺ could be titrated with an alkali

The I₂ could be titrated with sodium thiosulphate

Colorimetry.


If one of the reactants or products is coloured then colorimetry can be used to measure the change in colour of the reacting mixtures

The I₂ produced is a brown solution

Measuring change in electrical conductivity

Can be used if there is a change in the number of ions in the reaction mixture

Measurement of optical activity.

If there is a change in the optical activity through the reaction this could be followed in a polarimeter

Rate Equations

The rate equation relates mathematically the rate of reaction to the concentration of the reactants.

For the following reaction, $aA + bB \rightarrow$ products, the generalised rate equation is:

$$r = k[A]^m[B]^n$$

r is used as symbol for rate

The unit of r is usually $\text{mol dm}^{-3} \text{s}^{-1}$

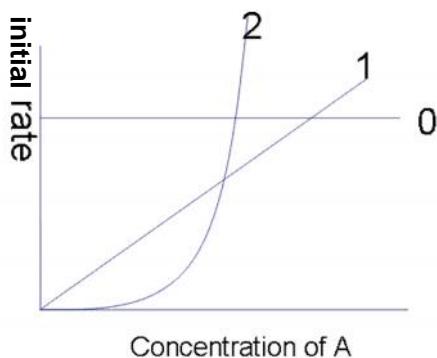
m, n are called **reaction orders**

Orders are usually integers 0,1,2

0 means the reaction is zero order with respect to that reactant

1 means first order

2 means second order


NOTE: the orders have *nothing* to do with the stoichiometric coefficients in the balanced equation. They are worked out experimentally

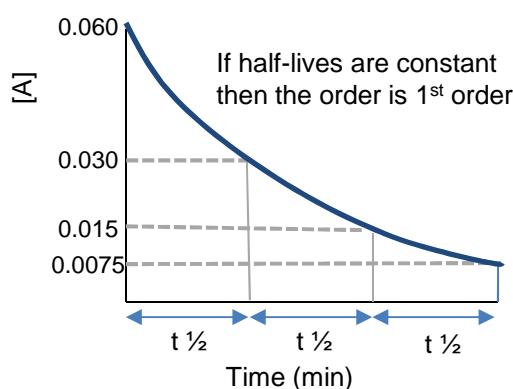
The square brackets $[A]$ means the concentration of A (unit mol dm^{-3})

k is called the **rate constant**

The **total order** for a reaction is worked out by adding all the individual orders together ($m+n$)

Calculating orders from initial rate data

For zero order: the concentration of A has no effect on the rate of reaction $r = k[A]^0 = k$


For first order: the rate of reaction is directly proportional to the concentration of A $r = k[A]^1$

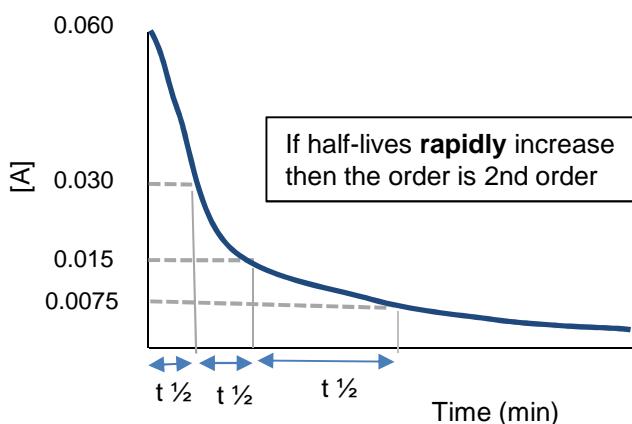
For second order: the rate of reaction is proportional to the concentration of A squared $r = k[A]^2$

Graphs of initial rate against concentration show the different orders. The initial rate may have been calculated from taking gradients from concentration/time graphs

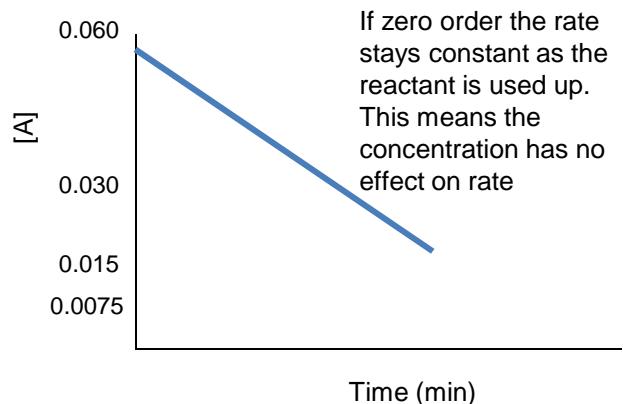
For a rate concentration graph to show the order of a particular reactant the concentration of that reactant must be varied whilst the concentrations of the other reactants should be kept constant.

Continuous rate experiments

Continuous rate data


This is data from one experiment where the concentration of one substance is followed throughout the experiment.

For this method to work the concentrations of the reactants not being followed must be in large excess in the experiment so their concentrations stay virtually constant and do not affect rate.


This data is processed by plotting the data and calculating successive half-lives.

The half-life of a first-order reaction is independent of the concentration and is constant

Second order

zero order

The rate constant (k)

1. The units of k depend on the overall order of reaction. It must be worked out from the rate equation
2. The value of k is independent of concentration and time. It is constant at a fixed temperature.
3. The value of k refers to a specific temperature and it **increases** if we **increase temperature**

For a 1st order overall reaction the unit of k is s^{-1}

For a 2nd order overall reaction the unit of k is $\text{mol}^{-1}\text{dm}^3\text{s}^{-1}$

For a 3rd order overall reaction the unit of k is $\text{mol}^{-2}\text{dm}^6\text{s}^{-1}$

Example (first order overall)

$$\text{Rate} = k[A][B]^0 \quad m = 1 \text{ and } n = 0$$

- reaction is first order in A and zero order in B
- overall order = $1 + 0 = 1$
- usually written: Rate = $k[A]$

Remember: the values of the reaction orders must be determined from experiment; they cannot be found by looking at the balanced reaction equation

Calculating units of k

1. Rearrange rate equation to give k as subject

$$k = \frac{\text{Rate}}{[A]}$$

2. Insert units and cancel

$$k = \frac{\text{mol dm}^{-3}\text{s}^{-1}}{\text{mol dm}^{-3}}$$

$$\text{Unit of } k = \text{s}^{-1}$$

Example: Write rate equation for reaction between A and B where A is 1st order and B is 2nd order.

$$r = k[A][B]^2 \quad \text{overall order is 3}$$

Calculate the unit of k

1. Rearrange rate equation to give k as subject

$$k = \frac{\text{Rate}}{[A][B]^2}$$

2. Insert units and cancel

$$k = \frac{\text{mol dm}^{-3}\text{s}^{-1}}{\text{mol dm}^{-3} \cdot (\text{mol dm}^{-3})^2}$$

3. Simplify fraction

$$k = \frac{\text{s}^{-1}}{\text{mol}^2\text{dm}^{-6}}$$

$$\text{Unit of } k = \text{mol}^{-2}\text{dm}^6\text{s}^{-1}$$

Rate Equations

The rate equation relates mathematically the rate of reaction to the concentration of the reactants.

For the following reaction, $aA + bB \rightarrow$ products, the generalised rate equation is:

$$r = k[A]^m[B]^n$$

r is used as symbol for rate

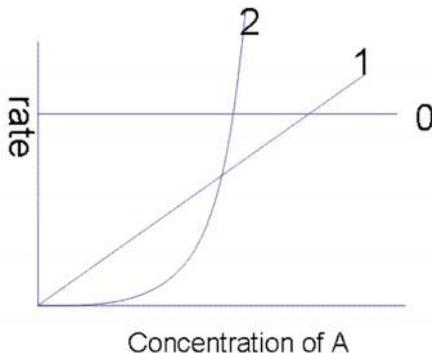
The unit of r is usually $\text{mol dm}^{-3} \text{s}^{-1}$

m, n are called **reaction orders**

Orders are usually integers 0,1,2

0 means the reaction is zero order with respect to that reactant

1 means first order


2 means second order

NOTE: the orders have *nothing* to do with the stoichiometric coefficients in the balanced equation. They are worked out experimentally

The square brackets $[A]$ means the concentration of A (unit mol dm^{-3})

k is called the **rate constant**

The **total order** for a reaction is worked out by adding all the individual orders together ($m+n$)

For zero order: the concentration of A has no effect on the rate of reaction $r = k[A]^0 = k$

For first order: the rate of reaction is directly proportional to the concentration of A $r = k[A]^1$

For second order: the rate of reaction is proportional to the concentration of A squared $r = k[A]^2$

The rate constant (k)

1. The units of k depend on the overall order of reaction. It must be worked out from the rate equation
2. The value of k is independent of concentration and time. It is constant at a fixed temperature.
3. The value of k refers to a specific temperature and it **increases** if we **increase temperature**

For a 1st order overall reaction the unit of k is s^{-1}

For a 2nd order overall reaction the unit of k is $\text{mol}^{-1}\text{dm}^3\text{s}^{-1}$

For a 3rd order overall reaction the unit of k is $\text{mol}^{-2}\text{dm}^6\text{s}^{-1}$

Example (first order overall)

$$\text{Rate} = k[A][B]^0 \quad m = 1 \text{ and } n = 0$$

- reaction is first order in A and zero order in B
- overall order = $1 + 0 = 1$
- usually written: Rate = $k[A]$

Remember: the values of the reaction orders must be determined from experiment; they cannot be found by looking at the balanced reaction equation

Calculating units of k

1. Rearrange rate equation to give k as subject

$$k = \frac{\text{Rate}}{[A]}$$

2. Insert units and cancel

$$k = \frac{\text{mol dm}^{-3}\text{s}^{-1}}{\text{mol dm}^{-3}}$$

Unit of $k = \text{s}^{-1}$

Example: Write rate equation for reaction between A and B where A is 1st order and B is 2nd order.

$$r = k[A][B]^2 \quad \text{overall order is 3}$$

Calculate the unit of k

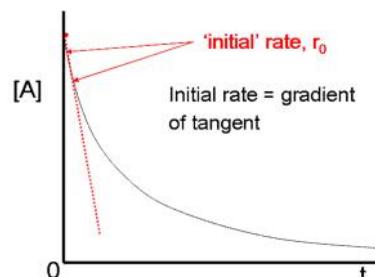
1. Rearrange rate equation to give k as subject

$$k = \frac{\text{Rate}}{[A][B]^2}$$

2. Insert units and cancel

$$k = \frac{\text{mol dm}^{-3}\text{s}^{-1}}{\text{mol dm}^{-3} \cdot (\text{mol dm}^{-3})^2}$$

3. Simplify fraction


$$k = \frac{\text{s}^{-1}}{\text{mol}^2\text{dm}^{-6}}$$

Unit of k = mol⁻²dm⁶s⁻¹

Working out orders from experimental initial rate data

The initial rate is the rate at the start of the reaction, where it is fastest. It is often obtained by taking the gradient of the conc vs time graph.

Normally to work out the rate equation we do a series of experiments where the initial concentrations of reactants are changed (one at a time) and measure the initial rate each time. This data is normally presented in a table.

Example: work out the rate equation for the following reaction, $\text{A} + \text{B} + 2\text{C} \rightarrow \text{D} + 2\text{E}$, using the initial rate data in the table

Experiment	[A] mol dm ⁻³	[B] mol dm ⁻³	[C] mol dm ⁻³	Rate mol dm ⁻³ s ⁻¹
1	0.1	0.5	0.25	0.1
2	0.2	0.5	0.25	0.2
3	0.1	1.0	0.25	0.4
4	0.1	0.5	0.5	0.1

In order to calculate the order for a particular reactant it is easiest to compare two experiments where **only that reactant** is being changed

If conc is doubled and rate stays the same: order= 0

If conc is doubled and rate doubles: order= 1

If conc is doubled and rate quadruples : order= 2

For reactant A compare between experiments **1 and 2**

For reactant A as the concentration **doubles** (B and C staying constant) so does the rate. Therefore the order with respect to reactant **A is first order**

For reactant B compare between experiments **1 and 3** :

As the concentration of **B doubles** (A and C staying constant) the rate **quadruples**.

Therefore the order with respect to **B is 2nd order**

For reactant C compare between experiments **1 and 4** :

As the concentration of **C doubles** (A and B staying constant) the rate **stays the same**.

Therefore the order with respect to C is zero order

The overall rate equation is $r = k [A] [B]^2$

The reaction is 3rd order overall and the unit of the rate constant = mol⁻²dm⁶s⁻¹

Working out orders when two reactant concentrations are changed simultaneously

In most questions it is possible to compare between two experiments where only one reactant has its initial concentration changed. If, however, both reactants are changed then the effect of both individual changes on concentration are multiplied together to give the effect on rate.

In a reaction where the rate equation is $r = k [A] [B]^2$

If the $[A]$ is $\times 2$ that rate would **$\times 2$**

If the $[B]$ is $\times 3$ that rate would $\times 3^2 = \times 9$

If these changes happened at the same time then the rate would $\times 2 \times 9 = \times 18$

Example work out the rate equation for the reaction, between X and Y, using the initial rate data in the table

Experiment	Initial concentration of X/ mol dm ⁻³	Initial concentration of Y/ mol dm ⁻³	Initial rate/ mol dm ⁻³ s ⁻¹
1	0.05	0.1	0.15×10^{-6}
2	0.10	0.1	0.30×10^{-6}
3	0.20	0.2	2.40×10^{-6}

For reactant X compare between experiments **1 and 2**

For reactant X as the concentration **doubles** (Y staying constant) so does the rate.
Therefore the order with respect to reactant X is **first order**

Comparing between experiments 2 and 3 :

Both X and Y **double** and the **rate goes up by 8**

We know X is first order so that will have doubled rate

The effect of Y, therefore, on rate is to have quadrupled it.

Y must be second order

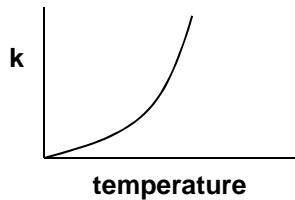
The overall rate equation is $r = k [X] [Y]^2$

The reaction is 3rd order overall and the unit of the rate constant =mol⁻²dm⁶s⁻¹

Calculating a value for k using initial rate data

Using the above example, choose any one of the experiments and put the values into the rate equation that has been rearranged to give k. Using experiment 3:

$$r = k [X] [Y]^2 \longrightarrow k = \frac{r}{[X] [Y]^2} \quad k = \frac{2.40 \times 10^{-6}}{0.2 \times 0.2^2} \quad k = 3.0 \times 10^{-4} \text{ mol}^{-2} \text{dm}^6 \text{s}^{-1}$$

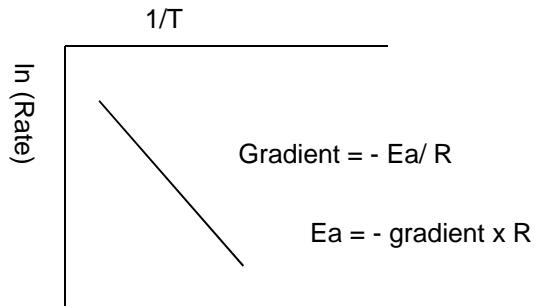

Remember k is the same for all experiments done at the same temperature.

Increasing the temperature increases the value of the rate constant k

Effect of Temperature on rate constant

Increasing the temperature increases the value of the rate constant k

Increasing temperature increases the rate constant k . The relationship is given by the Arrhenius equation $k = Ae^{-Ea/RT}$ where A is a constant R is gas constant and Ea is activation energy.

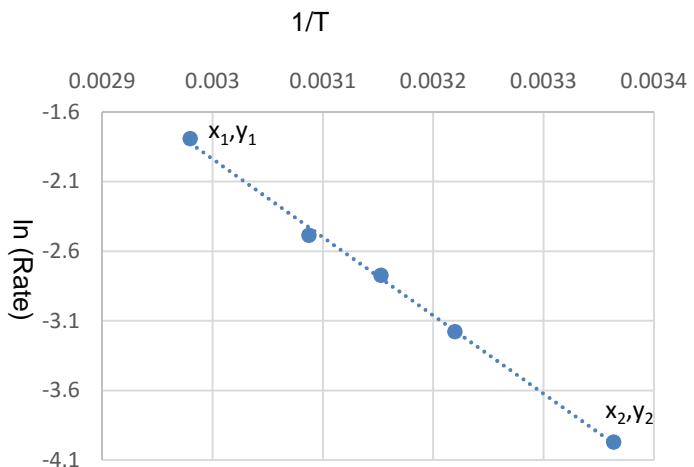


The Arrhenius equation can be rearranged

$$\ln k = \text{constant} - Ea/(RT)$$

k is proportional to the rate of reaction so $\ln k$ can be replaced by $\ln(\text{rate})$

From plotting a graph of $\ln(\text{rate})$ or $\ln k$ against $1/T$ the activation energy can be calculated from measuring the gradient of the line



Example

Temperature T (K)	1/T	time t (s)	1/t	$\ln(1/t)$
297.3	0.003364	53	0.018868	-3.9703
310.6	0.00322	24	0.041667	-3.1781
317.2	0.003153	16	0.0625	-2.7726
323.9	0.003087	12	0.083333	-2.4849
335.6	0.00298	6	0.166667	-1.7918

$$\text{gradient} = \frac{y_2 - y_1}{x_2 - x_1}$$

The gradient should always be -ve

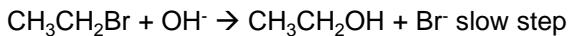
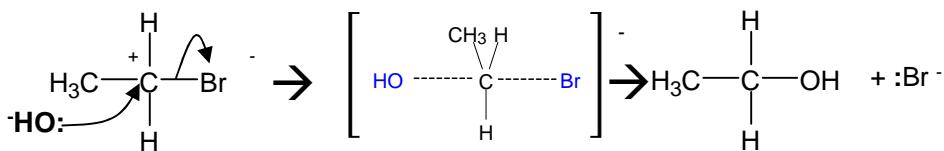
In above example gradient = -5680

$$\begin{aligned} Ea &= -\text{gradient} \times R \quad (8.31) \\ &= -5680 \times 8.31 \\ &= 47200 \text{ J mol}^{-1} \end{aligned}$$

The unit of Ea using this equation will be J mol^{-1} .

Convert into kJ mol^{-1} by dividing 1000

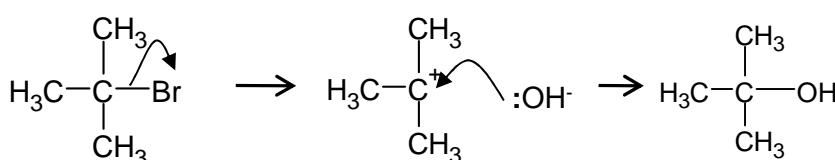
$$Ea = +47.2 \text{ kJ mol}^{-1}$$



use a line of best fit
use all graph paper
choose points far apart on the graph to calculate the gradient

Example 3: S_N1 or S_N2?

Remember the nucleophilic substitution reaction of halogenoalkanes and hydroxide ions.

This is a one step mechanism

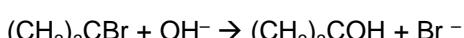

The rate equation is

$$r = k [\text{CH}_3\text{CH}_2\text{Br}] [\text{OH}^-]$$

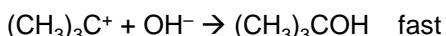
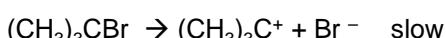
This is called S_N2.
Substitution, Nucleophilic,
2 molecules in rate
determining step

Primary halogenoalkanes tend to
react via the S_N2 mechanism

S_N1 nucleophilic substitution mechanism for tertiary halogenoalkanes


The Br first breaks away
from the haloalkane to
form a carbocation
intermediate

The hydroxide
nucleophile then attacks
the positive carbon



Tertiary halogenoalkanes
undergo this mechanism as the
tertiary carbocation is made
stabilised by the electron
releasing methyl groups around it.
(see alkenes topic for another
example of this).

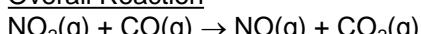
Also the bulky methyl groups
prevent the hydroxide ion from
attacking the halogenoalkane in
the same way as the mechanism
above

Overall Reaction

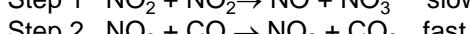
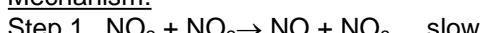
Mechanism:

The rate equation is

$$r = k [(\text{CH}_3)_3\text{CBr}]$$


This is called S_N1.

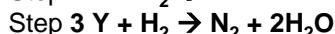
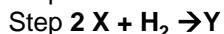
Substitution, Nucleophilic,
1 molecule in rate
determining step



Primary halogenoalkanes don't do the S_N1 mechanism
because they would only form an unstable primary
carbocation.

Example 4

Overall Reaction

Mechanism:



- NO₃ is a reaction intermediate

NO₂ appears twice in the slow steps so it
is second order. CO does not appear in
the slow step so is zero order.

$$r = k [\text{NO}_2]^2$$

Example 5

Using the rate equation rate = $k[\text{NO}]^2[\text{H}_2]$ and
the overall equation $2\text{NO}(g) + 2\text{H}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g)$, the
following three-step mechanism for the reaction was
suggested. X and Y are intermediate species.

Which **one of the three steps is the rate-determining step?**

Step 2 – as H₂ appears in rate equation and
combination of step 1 and 2 is the ratio that
appears in the rate equation.