2.1.3 Amount of substance

The mole is the key concept for chemical calculations

DEFINITION: **The mole** is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams of carbon-12.

DEFINITION: **Relative atomic mass** is the **average mass** of one atom compared to one twelfth of the mass of one atom of carbon-12

DEFINITION: Molar Mass is the mass in grams of 1 mole of a substance and is given the unit of g mol-1

Molar Mass for a compound can be calculated by adding up the mass numbers(from the periodic table) of each element in the compound eg $CaCO_3 = 40.1 + 12.0 + 16.0 \times 3 = 100.1$

molar gas volume (gas volume per mole, units $dm^3 mol^{-1}$). This is the volume of 1 mole of a gas at a given temperature and pressure. All gases have this same volume. At room pressure (1atm) and room temperature 25°C the molar gas volume is 24 $dm^3 mol^{-1}$

Avogadro's Constant

There are 6.02×10^{23} atoms in 12 grams of carbon-12. Therefore explained in simpler terms 'One mole of any specified entity contains 6.02×10^{23} of that entity':

Avogadro's Constant can be used for atoms, molecules and ions

- 1 mole of copper atoms will contain 6.02 x 10²³ atoms
- 1 mole of carbon dioxide molecules will contain 6.02 x 10²³ molecules
- 1 mole of sodium ions will contain 6.02 x 10²³ ions

For pure solids, liquids and gases

amount = <u>mass</u> Mr

Unit of Mass: grams Unit of amount: mol

Example 1: What is the amount, in mol, in 35.0g of CuSO₄?

amount = mass/Mr = 35/ (63.5 + 32 +16 x4) = 0.219 mol

Many questions will involve changes of units 1000 mg =1g 1000 g =1kg 1000kg = 1 tonne

Example 2: What is the amount, in mol, in 75.0mg of CaSO₄.2H₂O?

amount = mass/Mr

 $= 0.075/(40 + 32.0 + 16.0 \times 4 + 18.0 \times 2)$

= 4.36x10⁻⁴ mol

Significant Figures

Give your answers to the same number of significant figures as the number of significant figures for the data you given in a question. If you are given a mixture of different significant figures, use the smallest

Empirical formulae

Definition: An empirical formula is the **simplest** ratio of atoms of each **element** in the compound.

General method

Step 1: Divide each mass (or % mass) by the atomic mass of the element

Step 2: For each of the answers from step 1 divide by the smallest one of those numbers.

Step 3: sometimes the numbers calculated in step 2 will need to be multiplied up to give whole numbers.

These whole numbers will be the empirical formula.

The same method can be used for the following types of data:

- 1. masses of each element in the compound
- 2. percentage mass of each element in the compound

Example 3: Calculate the empirical formula for a compound that contains 1.82g of K, 5.93g of I and 2.24g of O

Step1: Calculate amount, in mol, by dividing each mass by the atomic mass of the element

K = 1.82 / 39.1 I = 5.93/126.9 O = 2.24/16= 0.0465 mol = 0.0467mol = 0.14 mol

Step 2 For each of the answers from step 1 divide by the smallest one of those numbers.

Empirical formula =KIO₃

Molecular formula from empirical formula

Definition: A molecular formula is the **actual** number of atoms of each element in the compound.

From the relative molecular mass (Mr) work out how many times the mass of the empirical formula fits into the Mr.

Example 4. work out the molecular formula for the compound with an empirical formula of C_3H_6O and a M_r of 116

C₃H₆O has a mass of 58

The empirical formula fits twice into M_r of 116

So molecular formula is C₆H₁₂O₂

The Mr does not need to be exact to turn an empirical formula into the molecular formula because the molecular formula will be a whole number multiple of the empirical formula

Hydrated salt

A Hydrated salt contains water of crystallisation

$$Cu(NO_3)_2$$

Anhydrous copper (II) nitrate(V).

Example 5

 ${\rm Na_2SO_4}$. ${\rm xH_2O}$ has a molar mass of 322.1, Calculate the value of x

Molar mass
$$xH_2O = 322.1 - (23x2 + 32.1 + 16x4)$$

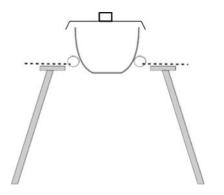
= 180

Heating in a crucible

This method could be used for measuring mass loss in various thermal decomposition reactions and also for mass gain when reacting magnesium in oxygen.

The water of crystallisation in calcium sulphate crystals can be removed as water vapour by heating as shown in the following equation.

$$CaSO_4.xH_2O(s)$$
 $CaSO_4(s) + xH_2O(g)$


Method.

- •Weigh an empty clean dry crucible and lid .
- •Add 2g of hydrated calcium sulphate to the crucible and weigh again
- •Heat strongly with a Bunsen for a couple of minutes
- •Allow to cool
- •Weigh the crucible and contents again
- •Heat crucible again and reweigh until you reach a constant mass (do this to ensure reaction is complete).

Large amounts of hydrated calcium sulphate, such as 50g, should not be used in this experiment as the decomposition is like to be incomplete.

The crucible needs to be dry otherwise a wet crucible would give an inaccurate result. It would cause mass loss to be too large as water would be lost when heating.

The lid improves the accuracy of the experiment as it prevents loss of solid from the crucible but should be loose fitting to allow gas to escape.

Small amounts the solid, such as 0.100 g, should **not** be used in this experiment as errors in weighing are too high.

Example 6. 3.51 g of hydrated zinc sulphate were heated and 1.97 g of anhydrous zinc sulphate were obtained.

Use these data to calculate the value of the integer x in ZnSO₄.xH₂O

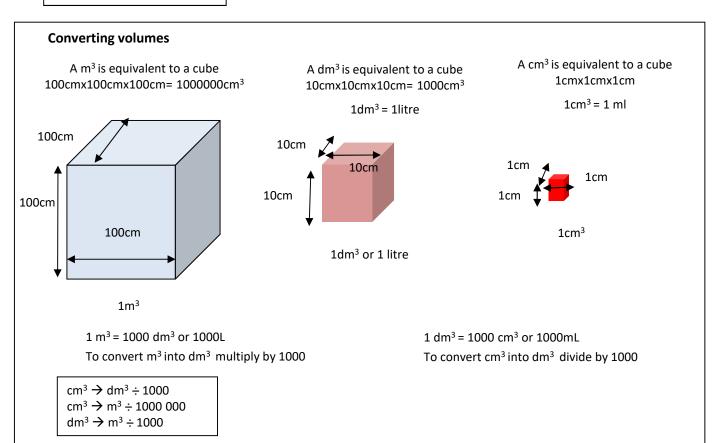
Calculate the mass of $H_2O = 3.51 - 1.97 = 1.54g$

Calculate moles of ZnSO₄ =
$$\frac{1.97}{161.5}$$
 Calculate moles of H₂O = $\frac{1.54}{18}$

Calculate ratio of mole of ZnSO₄ to H₂O =
$$\frac{0.0122}{0.0122}$$
 = $\frac{0.085}{0.0122}$

$$X = 7$$

Concentration of Solutions


A solution is a mixture formed when a solute dissolves in a solvent. In chemistry we most commonly use water as the solvent to form aqueous solutions. The solute can be a solid, liquid or a gas.

Molar concentration can be measured for solutions. This is calculated by dividing the amount in moles of the solute by the volume of the solution. The volume is measure is dm³. The unit of molar concentration is mol dm⁻³; it can also be called molar using symbol M

Concentration = <u>amount</u> volume

Unit of concentration: mol dm-3 or M

Unit of Volume: dm3

Example 7 What is the concentration of solution made by dissolving 5.00g of Na₂CO₃ in 250 cm³ water?

$$= 5 / (23.0 \times 2 + 12 + 16 \times 3)$$

= 0.0472 mol

conc= amount/Volume

= 0.0472 / **0.25**

= 0.189 mol dm⁻³

Example 8 What is the concentration of solution made by dissolving 10kg of Na₂CO₃ in 0.50 m³ water?

$$= 10\ 000\ /\ (23.0\ x2\ +\ 12\ +16\ x3)$$

conc= amount/Volume

= 0.19 mol dm⁻³

Mass Concentration

The concentration of a solution can also be measured in terms of mass of solute per volume of solution

Mass Concentration = <u>mass</u> volume

Unit of mass concentration: g dm-3

Unit of Mass **g**Unit of Volume: **dm**³

To turn concentration measured in mol dm⁻³ into concentration measured in g dm⁻³ multiply by Mr of the substance

conc in g dm^{-3} = conc in mol dm^{-3} x Mr

The concentration in g dm⁻³ is the same as the mass of solute dissolved in 1dm³

Ions dissociating

When soluble ionic solids dissolve in water they will dissociate into separate ions. This can lead to the concentration of ions differing from the concentration of the solute.

Example 9

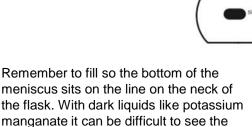
If 5.86g (0.1 mol) of sodium chloride (NaCl) is dissolved in 1 $\rm dm^3$ of water then the concentration of sodium choride solution would be 0.1 moldm $^{-3}$.

However the 0.1 mol sodium chloride would split up and form 0.1 mol of sodium ions and and 0.1 mol of chloride ions. The concentration of sodium ions is therefore 0.1 mol dm⁻³ and the concentration of chloride ions is also 0.1 mol dm⁻³

Example 10

If 9.53g (0.1 mol) of magnesium chloride (MgCl $_2$) is dissolved in 1 dm 3 of water then the concentration of magnesium chloride solution (MgCl $_2$ aq) would be 0.1moldm $^{-3}$.

However the 0.1 mol magnesium chloride would split up and form 0.1 mol of magnesium ions and 0.2 mol of chloride ions. The concentration of magnesium ions is therefore 0.1 mol dm⁻³ and the concentration of chloride ions is now 0.2 mol dm⁻³


NaCl(s) +aq
$$\rightarrow$$
 Na⁺(aq) + Cl⁻ (aq)
0.1mol 0.1mol 0.1mol

$$MgCl_2(s) +aq \rightarrow Mg^{2+}(aq) + 2Cl^{-}(aq)$$

0.1mol 0.2mol 0.2mol

Making a solution

- Weigh the sample bottle containing the required mass of solid on a 2 dp balance
- Transfer to beaker and reweigh sample bottle
- · Record the difference in mass
- Add 100cm³ of distilled water to the beaker. Use a glass rod to stir to help dissolve the solid.
- •Sometimes the substance may not dissolve well in cold water so the beaker and its contents could be heated gently until all the solid had dissolved.
- Pour solution into a 250cm³ graduated flask via a funnel.
- Rinse beaker and funnel and add washings from the beaker and glass rod to the volumetric flask.
- make up to the mark with distilled water using a dropping pipette for last few drops.
- · Invert flask several times to ensure uniform solution.

Alternatively the known mass of solid in the weighing bottle could be transferred to beaker, washed and washings added to the beaker.

meniscus.

Dilutions

Diluting a solution

- •Pipette 25cm³ of original solution into a 250cm³ volumetric flask
- •make up to the mark with distilled water using a dropping pipette for last few drops.
- Invert flask several times to ensure uniform solution.

Using a volumetric pipette is more accurate than a measuring cylinder because it has a smaller uncertainty

Use a teat pipette to make up to the mark in volumetric flask to ensure volume of solution accurately measured and one doesn't go over the line

Calculating Dilutions

Diluting a solution will not change the amount of moles of solute present but increase the volume of solution and hence the concentration will lower

amount= volume x concentration

If amount of moles does not change then

Original volume x original concentration = new diluted volume x new diluted concentration

so

new diluted concentration = original concentration x <u>Original volume</u> new diluted volume

The new diluted volume will be equal to the original volume of solution added + the volume of water added.

Example 11

If 50 cm³ of water are added to 150 cm³ of a 0.20 mol dm⁻³ NaOH solution, what will the concentration of the diluted solution be?

new diluted concentration = original concentration x Original volume

new diluted volume

new diluted concentration = 0.20 x <u>0.150</u>

0.200

 $= 0.15 \text{ mol dm}^{-3}$

Example 12

What volume of water in cm³ must be added to dilute 5.00 cm³ of 1.00 mol dm⁻³ hydrochloric acid so that it has a concentration of 0.050 mol dm⁻³?

Amount in mol original solution = conc x vol

 $= 1.00 \times 0.005$

= 0.005

New volume = amount /conc

= 0.005/0.05

 $= 0.1 dm^3 = 100 cm^3$

Volume of water added = 100-5 = 95cm³

Safety and hazards

Irritant - dilute acid and alkalis- wear googles
Corrosive- stronger acids and alkalis wear goggles
Flammable – keep away from naked flames
Toxic – wear gloves- avoid skin contact- wash hands after use
Oxidising- Keep away from flammable / easily oxidised materials

Hazardous substances in low concentrations or amounts will not pose the same risks as the pure substance.

Ideal Gas Equation

The ideal gas equation applies to all gases and mixtures of gases. If a mixture of gases is used the value n will be the total moles of all gases in the mixture.

The biggest problems students have with this equation is choosing and converting to the correct units, so pay close attention to the units.

PV = nRT

Unit of Pressure (P):Pa Unit of Volume (V): m³ Unit of Temp (T): K n= moles R = 8.31 JK⁻¹mol⁻¹

```
Example 13: What is the mass of Cl_2 gas that has a pressure of 100kPa, temperature 20^{\circ}C, volume 500\text{cm}^3. (R = 8.31)

moles = PV/RT
= 100\,000\,\times\,0.0005\,/\,(8.31\,\times\,293)
= 0.0205\,\text{mol}

Mass = amount x Mr
= 0.0205\,\times\,(35.5\,\times\,2)
= 1.46\,\text{g}
```

Converting temperature

°C → K add 273

Example 14: 0.150g of a volatile liquid was injected into a sealed gas syringe. The gas syringe was placed in an oven at 70° C at a pressure of 100kPa and a volume of 80cm³ was measured. What is the Mr of the volatile liquid ? (R = 8.31)

```
moles = PV/RT

= 100 000 x 0.00008 / (8.31 x 343)

= 0.00281 mol

Mr = mass/amount

= 0.15 / 0.00281

= 53.4 g mol<sup>-1</sup>
```

Using a gas syringe

Gas syringes can be used for a variety of experiments where the volume of a gas is measured, possibly to work out moles of gas or to follow reaction rates.

The volume of a gas depends on pressure and temperature so when recording volume it is important to note down the temperature and pressure of the room.

Moles of gas can be calculated from gas volume (and temperature and pressure) using ideal gas equation PV = nRT

Potential errors in using a gas syringe •gas escapes before bung inserted

syringe sticks

• some gases like carbon dioxide or sulphur dioxide are soluble in water so the true amount of gas is not measured.

Make sure you don't leave gaps in your diagram where gas could escape

If drawing a gas syringe make sure you draw it with some measurement markings on the barrel to show measurements can be made.

Changing the Conditions of a gas

Questions may involve the same amount of gas under different conditions.

Example 15

40 cm³ of oxygen and 60 cm³ of carbon dioxide, each at 298 K and 100 kPa, were placed into an evacuated flask of volume 0.50 dm³. What is the pressure of the gas mixture in the flask at 298 K?

There are two approaches to solving this

- 1. Work out amount in mol of gas using ideal gas equation then put back into ideal gas equation with new conditions
- 2. Or combine the equation n= PV/RT as on right

Can do this as moles of gas do not change

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

As Temperature is the same can make the above equation $P_1V_1 = P_2V_2$

$$P_2 = P_1 V_1 / V_2$$

= 100000 x

 $= 1000000 \times 1 \times 10^{-4} / 5 \times 10^{-4}$

= 20 000Pa

molar gas volume

1 mole of any gas at room pressure (1atm) and room temperature 25°C will have the volume of 24dm³

Example 16: What is the volume in dm³ at room temperature and pressure of 50.0g of Carbon dioxide gas?

amount = mass/Mr

 $= 50/(12 + 16 \times 2)$

= 1.136 mol

Gas Volume (dm3)= amount x 24

= 1.136 x 24

= or 27.3 dm^3 to 3 sig fig

Reacting Volumes of Gas

Equal volumes of any gases measured under the same conditions of temperature and pressure contain equal numbers of molecules (or atoms if the gas in monatomic)

Volumes of gases reacting in a balanced equation can be calculated by simple ratio

Example 17 If one burnt 500 cm³ of methane at 1atm and 300K what volume of Oxygen would be needed and what volume of CO₂ would be given off under the same conditions?

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(I)$$

1 mole 2 mole 1 mole

500cm³ 1dm³ 500cm³

Simply multiply

gas volume x2

Example 18 An important reaction which occurs in the catalytic converter of a car is $2CO(g) + 2NO(g) \rightarrow 2CO_2(g) + N_2(g)$

In this reaction, when 500 cm³ of CO reacts with 500 cm³ of NO at 650 °C and at 1 atm. Calculate the **total** volume of gases produced at the same temperature and pressure?

 $2CO(g) + 2NO(g) \rightarrow 2CO_2(g) + N_2(g)$ 500cm³ 500cm³ **500cm³ 250cm³**

total volume of gases produced = 750cm³

8

Avogadro's Constant

The mole is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams of carbon-12.

Avogadro's Constant

There are 6.02×10^{23} atoms in 12 grams of carbon-12. Therefore explained in simpler terms 'One mole of any specified entity contains 6.02×10^{23} of that entity':

Avogadro's Constant can be used for atoms, molecules and ions

1 mole of copper atoms will contain 6.02 x 10²³ atoms

1 mole of carbon dioxide molecules will contain 6.02 x 10²³ molecules

1 mole of sodium ions will contain 6.02 x 10²³ ions

No of particles = amount of substance (in mol) X Avogadro's constant

Example 19: How many atoms of Tin are there in a 6.00 g sample of Tin metal?

amount = mass/Ar

= 6/118.7

= 0.05055 mol

Number atoms = amount x 6.02×10^{23}

 $= 0.05055 \times 6.02 \times 10^{23}$

 $= 3.04 \times 10^{22}$

Example 20: How many chloride ions are there in a 25.0 cm³ of a solution of magnesium chloride of concentration 0.400 moldm⁻³?

amount= concentration x Volume

 $MgCl_2 = 0.400 \times 0.025$

= 0.0100 mol

Amount of chloride ions = 0.0100 x2

There are two moles of chloride ions for every one mole of MgCl₂

= 0.0200

Number ions of CI^- = amount x 6.02 x 10^{23}

 $= 0.0200 \times 6.02 \times 10^{23}$

 $= 1.204 \times 10^{22}$

Density

Density calculations are usually used with pure liquids but to work out the mass from a measured volume. It can also be used with solids and gases.

density = mass

Volume

Density is usually given in g cm⁻³

Care needs to be taken if different units are used.

Example 21: How many molecules of ethanol are there in a 0.500 dm 3 of ethanol (CH $_3$ CH $_2$ OH) liquid? The density of ethanol is 0.789 g cm $^{-3}$

Mass = density x Volume ethanol

 $= 0.789 \times 500$

= 394.5g

amount = mass/Mr

= 394.5/46.0

= 8.576 mol

Number of molecules= amount x 6.022 x 10²³

 $= 8.576 \times 6.022 \times 10^{23}$

 $= 5.16 \times 10^{23} (to 3 sig fig)$

Example 22:There are 980mol of pure gold in a bar measuring 10 cm by 20 cm by 50 cm. What is the density of gold in kg dm⁻³

Mass = amount x Mr

= 980 x 197

= 193060 g

= 193.06kg

Volume = 10x20x50

 $= 10 000 cm^3$

 $= 10 dm^3$

density = mass/volume

= 193/10

 $= 19.3 \text{ kg dm}^{-3}$

Converting quantities between different substances using a balanced equation

$$N_2 + 3H_2 \rightarrow 2NH_3$$

The balancing (stoichiometric) numbers are mole ratios e.g. 1 mol of $\rm N_2$ reacts with 3 mol of $\rm H_2$ to produce 2mol of $\rm NH_3$

Typically we are given a quantity of one substance and are asked to work out a quantity for another substance in the reaction. Any of the above three equations can be used.

```
Step 1:
```

Use one of the above 3 equations to convert any given quantity into amount in mol

Mass → amount

Volume of gas → amount

Conc and vol of solution → amount

Step 2: Use balanced equation to convert amount in mol of initial substance into amount in mol of second

substance

Step 3
Convert amount, in mol, of second substance into quantity question asked for using relevant equation e.g. amount ,Mr → mass
Amount gas → vol gas amount, vol solution → conc

Example 23: What mass of Carbon dioxide would be produced from heating 5.50 g of sodium hydrogencarbonate?

2NaHCO₃ → Na₂CO₃ + CO₂ + H₂O

Step 1: work out amount, in mol, of sodium hydrogencarbonate amount = mass / Mr

= 5.5 /84

= 0.0655 mol

Step 2: use balanced equation to give amount in mol of ${\rm CO_2}$

 $\begin{array}{l} \textrm{2 moles NaHCO}_{\textrm{3}} : \textrm{1 moles CO}_{\textrm{2}} \\ \textrm{So } 0.0655 \, \textrm{HNO}_{\textrm{3}} : 0.0328 \textrm{mol CO}_{\textrm{2}} \end{array}$

Step 3: work out mass of CO₂
Mass = amount x Mr
= 0.0328 x 44.0
=1.44g

Example 24: 23.6cm³ of H_2SO_4 neutralised 25.0cm³ of 0.150M NaOH. What is the concentration of the H_2SO_4 ? $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$

Step 1: work out amount, in mol, of sodium hydroxide amount = conc x vol

= 0.150 x 0.025 = 0. 00375 mol

Step 2: use balanced equation to give moles of H₂SO₄

2 moles NaOH : 1 moles $\rm H_2SO_4$ So 0.00375 NaOH : 0.001875 mol $\rm H_2SO_4$

Step 3 work out concentration of H₂SO₄

conc= amount/Volume

= 0.001875 / 0.0236

= 0.0794 mol dm⁻³

Example 25: What is the total volume of gas produced in dm³ at 333K and 100kPa when 0.651 g of magnesium nitrate decomposes when heated?

 $2Mg (NO_3)_{2 (s)} \rightarrow 2 MgO_{(s)} + 4NO_{2 (g)} + O_{2 (g)}$

Step 1: work out moles of magnesium nitrate amount= mass / Mr

= 0.651 / 148.3

= 0.00439 mol

Step 2: use balanced equation to give moles of gas produced

2 moles Mg (NO₃)₂ : 4NO_{2 (g)} + O_{2 (g)} ie 5moles of gas So 0.00439 Mg (NO₃)₂ : 0.01098(0.00439 x 5 /₂) moles gas

Step 3: work out volume of gas

Volume = nRT/P

= (0.01098 x 8.31 x 333)/ 100000

 $= 0.000304 \text{m}^3$

 $= 0.303 dm^3$

Example 26: What mass of Copper would react completely with 150 cm³ of 1.60M nitric acid?

 $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$

Step 1: work out amount, in mol, of nitric acid

amount = conc x vol

 $= 1.60 \times 0.15$

= 0.24 mol

Step 2: use balanced equation to give moles of Cu

8 moles HNO_3 : 3 moles CuSo $0.24 \, HNO_3$: $0.09 \, (0.24 \, x^3/_8) \, mol \, Cu$

Step 3: work out mass of Cu

Mass = amount x Mr

 $= 0.09 \times 63.5$

=5.71g

Limiting and excess reactants

Example 27 What is the maximum mass of Titanium that could be produced from reacting 100 g of TiCl₄ with

80 g of sodium

 $TiCl_4 + 4 Na \rightarrow 4 NaCl + Ti$

Step 1: work out amount, in mol, Na

Step 1: work out amount, in mol, TiCl₄

amount = mass / Mr

amount = mass / Mr

= 100 /189.9 = 0.527 mol = 80/23.0 = 3.48 mol

Step 2 use balanced equation to work out which reactant is in excess

Using $1TiCl_4$:4 Na ratio we can see that 0.527mol of $TiCl_4$ should react with 2.108 mol of Na. We actually have 3.48 mole of Na which is an excess of 1.372 moles. We can complete calculation using the limiting reactant of $TiCl_4$

Step 3: use balanced equation to work out amount in mol of Ti formed

1 mol TiCl₄: 1 mole Ti

So 0.527mol TiCl₄ produces 0.527 mole Ti

Step 4: work out mass of Ti formed

Mass = amount x Mr

 $= 0.527 \times 47.9$

=25.24g

% Yield

percentage yield = _____ x 100 theoretical yield

% yield in a process can be lowered through incomplete reactions, side reactions, losses during transfers of substances, losses during purification stages.

Example 28: 25.0g of Fe₂O₃ was reacted and it produced 10.0g of Fe. What is the percentage yield?

 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

First calculate maximum mass of Fe that could be produced

Step 1: work out amount in mol of Iron oxide

amount = mass / Mr

=25 / 159.6

= 0.1566 mol

Step 2: use balanced equation to give moles of Fe

1 moles Fe₂O₃: 2 moles Fe

So $0.1566 \, \text{Fe}_2 \, \text{O}_3 : 0.313 \, \text{moles Fe}$

Step 3: work out mass of Fe

Mass = amount x Mr

= 0.313 x 55.8

=17.48g

% yield = (actual yield/theoretical yield) x 100

 $= (10/17.48) \times 100$

=57.2%

% Atom Economy

Do take into account balancing numbers when working out % atom economy.

Example 29: What is the % atom economy for the following reaction where Fe is the desired product assuming the reaction goes to completion?

Fe₂O₃ + 3CO
$$\Rightarrow$$
 2Fe + 3 CO₂
% atom economy = (2 x 55.8)
(2 x 55.8 + 3x16) + 3 x (12+16)
=45.8%

Sustainable chemistry requires chemists to design processes with high atom economy that minimise production of waste products.

Reactions where there is only one product where all atoms are used making product are ideal and have 100% atom economy.

e.g.
$$CH_2=CH_2 + H_2 \rightarrow CH_3CH_3$$

If a process does have a side, waste product the economics of the process can be improved by selling the bi-product for other uses