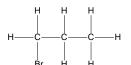
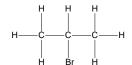

3.3 Halogenoalkanes

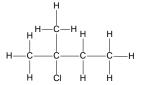
Naming Halogenoalkanes

Based on original alkane, with a *prefix* indicating halogen atom: *Fluoro* for F; *Chloro* for CI; *Bromo* for Br; *Iodo* for I.

H H H
H—C—C—C—H


Substituents are listed alphabetically


I-bromopropane


2-chloro-2-methylbutane

Classifying halogenoalkanes

Haloalkanes can be classified as primary, secondary or tertiary depending on the number of carbon atoms attached to the C-X functional group.

Primary halogenoalkane One carbon attached to the carbon atom adjoining the

halogen

Secondary halogenoalkane Two carbons attached to the carbon atom adjoining the halogen

Tertiary halogenoalkane

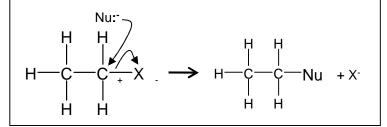
Three carbons attached to the carbon atom adjoining the halogen

Reactions of Halogenoalkanes

Halogenoalkanes undergo either **substitution** or **elimination** reactions

Organic reactions are classified by their mechanisms

1. Nucleophilic substitution reactions


Substitution: swapping a halogen atom for another atom or groups of atoms

Nucleophile: electron pair donator e.g. :OH-, :NH₃, CN-

The Mechanism: We draw (or **outline**) mechanisms to show in detail how a reaction proceeds

:Nu represents any nucleophile – they always have a **lone pair** and act as **electron pair donators**

The nucleophiles attack the positive carbon atom

The carbon has a small positive charge because of the electronegativity difference between the carbon and the halogen

We use curly arrows in mechanisms (with two line heads) to show the movement of two electrons

A curly arrow will always **start** from a **lone pair** of electrons or the **centre of a bond**

The rate of these substitution reactions depends on the strength of the C-X bond

The weaker the bond, the easier it is to break and the faster the reaction.

The iodoalkanes are the fastest to substitute and the fluoroalkanes are the slowest. The strength of the C-F bond is such that fluoroalkanes are very unreactive

	Bond enthalpy / kJmol ⁻¹
C-I	238
C-Br	276
C-Cl	338
C-F	484

Comparing the rate of hydrolysis reactions

Hydrolysis is defined as the splitting of a molecule (in this case a haloalkane) by a reaction with water

 $CH_3CH_2X + H_2O \rightarrow CH_3CH_2OH + X^- + H^+$

Aqueous silver nitrate is added to a haloalkane and the halide leaving group combines with a silver ion to form a **SILVER HALIDE PRECIPITATE**.

The precipitate only forms when the halide ion has left the haloalkane and so the rate of formation of the precipitate can be used to compare the reactivity of the different haloalkanes.

The **quicker** the **precipitate** is formed, the **faster** the **substitution** reaction and the **more reactive** the haloalkane

The rate of these substitution reactions depends on the strength of the C-X bond. The weaker the bond, the easier it is to break and the faster the reaction.

Water is a *poor* nucleophile but it can react *slowly* with haloalkanes in a substitution reaction

$$\label{eq:ch3CH2I+H2O} \begin{split} \text{CH}_3\text{CH}_2\text{I} + \text{H}_2\text{O} & \rightarrow \text{CH}_3\text{CH}_2\text{OH} + \text{I}^- + \text{H}^+ \\ \text{Ag}^+_{\; (\text{aq})} + \text{I}^-_{\; (\text{aq})} & \rightarrow \text{AgI}_{\; (\text{s})} \text{- yellow precipitate} \end{split}$$

The iodoalkane forms a precipitate with the silver nitrate first as the C-I bond is weakest and so it hydrolyses the quickest

Ag**I**_(s) - yellow precipitate Ag**Br**_(s) - cream precipitate Ag**CI**_(s) - white precipitate

Nucleophilic substitution with aqueous hydroxide ions

Change in functional group: halogenoalkane → alcohol

Reagent: potassium (or sodium) hydroxide

Conditions: In <u>aqueous solution</u>; Heat under reflux

Mechanism: Nucleophilic Substitution **Type of reagent**: Nucleophile, OH

The **aqueous** conditions needed is an important point. If the solvent is changed to **ethanol** an elimination reaction occurs

Alternative mechanism for tertiary halogenoalkanes

Tertiary haloalkanes undergo nucleophilic substitution in a different way

The Br first breaks away from the haloalkane to form a carbocation intermediate

The hydroxide nucleophile then attacks the positive carbon

You don't need to learn this but there have been application of understanding questions on this

Tertiary halogenoalkanes undergo this mechanism as the tertiary carbocation is stabilised by the electron releasing methyl groups around it. (see alkenes topic for another example of this). Also the bulky methyl groups prevent the hydroxide ion from attacking the halogenoalkane in the same way as the mechanism above

Nucleophilic substitution with cyanide ions

Change in functional group: halogenoalkane → nitrile

Reagent: KCN dissolved in ethanol/water mixture

Conditions: Heating under reflux Mechanism: Nucleophilic Substitution Type of reagent: Nucleophile, :CN⁻

Note: the mechanism is identical to the above one

$$\begin{array}{c|c} H_{3}C \xrightarrow{+} C & Br & \longrightarrow & H_{3}C \xrightarrow{-} C & C & + :Br & \longrightarrow & H_{3}C & \longrightarrow & H_{3$$

This reaction increases the length of the carbon chain (which is reflected in the name) In the above example butanenitrile includes the C in the nitrile group

Naming Nitriles

Nitrile groups have to be at the end of a chain. Start numbering the chain from the C in the CN

CH₂CH₂CN: propanenitrile

$$H_3C$$
— CH - CH_2 - C = N 3-methylbutanenitrile

Note the naming: butanenitrile and not butannitrile.

Nucleophilic substitution with ammonia

Change in functional group: halogenoalkane → amine

Reagent: NH₃ dissolved in ethanol

Conditions: Heating under pressure (in a sealed

tube)

Mechanism: Nucleophilic Substitution **Type of reagent**: Nucleophile, :NH₃

$$CH_{3} CH_{2} \longrightarrow CH_{3} CH_{2$$

Naming amines:

In the above example propylamine, the propyl shows the 3 C's of the carbon chain.

Sometimes it is easier to use the IUPAC naming for amines e.g. Propan-1-amine

Further substitution reactions can occur between the halogenoalkane and the amines formed leading to a lower yield of the amine. Using excess ammonia helps minimise this

2. Elimination reaction of halogenoalkanes

Elimination: removal of small molecule (often water) from the organic molecule

propene

Elimination with alcoholic hydroxide ions

Change in functional group: halogenoalkane >

alkene

Potassium (or sodium) hydroxide Reagents:

Conditions: In ethanol; Heat

Mechanism: Elimination Type of reagent: Base, OH-

Note the importance of the solvent to the type of

reaction here.

Aqueous: substitution

Alcoholic: elimination

$$CH_3 - C - H \rightarrow CH_3 - C - H + Br^- + H_2O$$

$$CH_3 - C - H \rightarrow CH_3 - C - H$$

$$CH_3 - C - H \rightarrow CH_3 - C - H$$

Often a mixture of products from both elimination and substitution occurs

With unsymmetrical secondary and tertiary halogenoalkanes two (or sometimes three) different structural isomers can be formed

The structure of the halogenoalkane also has an effect on the degree to which substitution or elimination occurs in this reaction.

Primary tends towards substitution

Tertiary tends towards elimination

Uses of Halogenoalkanes

chloroalkanes and chlorofluoroalkanes can be used as solvents CH_3CCI_3 was used as the solvent in dry cleaning

Many of these uses have now been stopped due to the toxicity of halogenoalkanes and also their detrimental effect on the atmosphere Halogenoalkanes have also been used as refrigerants, pesticides and aerosol propellants

Ozone Chemistry

The naturally occurring ozone (O₃) layer in the upper atmosphere is beneficial as it filters out much of the sun's harmful UV radiation

Ozone in the lower atmosphere is a pollutant and contributes towards the formation of smog

Man-made chlorofluorocarbons (CFC's) caused a hole to form in the ozone layer.

Chlorine atoms are formed in the upper atmosphere when energy from ultra-violet radiation causes C–Cl bonds in chlorofluorocarbons (CFCs) to break

 $CF_2CI_2 \rightarrow CF_2CI \cdot + CI$

The chlorine free radical atoms **catalyse** the decomposition of ozone due to these reactions because they are regenerated. (They provide an alternative route with a lower activation energy)

They contributed to the formation of a hole in the ozone layer.

 $CI'' + O_3 \rightarrow CIO'' + O_2$ $CIO'' + O_3 \rightarrow 2O_2 + CI''$ Overall equation $2 O_3 \rightarrow 3 O_2$

The regenerated CI radical means that one CI radical could destroy many thousands of ozone molecules

Legislation to ban the use of CFCs was supported by chemists and that they have now developed alternative chlorine-free compounds

HFCs (Hydro fluoro carbons) e.g.. CH₂FCF₃ are now used for refrigerators and air-conditioners. These are safer as they do not contain the C-Cl bond

The C-F bond is stronger than the C-Cl bond and is not affected by UV