### 1.2 Calculations

The mole is the key concept for chemical calculations
DEFINITION: The mole is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams of carbon-12.

DEFINITION: Relative atomic mass is the average mass of one atom compared to one twelfth of the mass of one atom of carbon-12

## Avogadro's Number

There are $6.022 \times 10^{23}$ atoms in 12 grams of carbon-12. Therefore explained in simpler terms 'One mole of any specified entity contains $6.022 \times 10^{23}$ of that entity':

DEFINITION: Relative molecular mass is the average mass of a molecule compared to one twelfth of the mass of one atom of carbon-12

For most calculations we will do at A-level we use the following 3 equations to calculate moles
Learn these equations carefully and what units to use in them

1. For pure solids, liquids and gases
moles $=\frac{\text { mass }}{M r}$

Unit of Mass: grams Unit of moles : mol

Remember the Mr must be calculated and quoted to 1dp
2. For gases


Unit of Pressure (P):Pa Unit of Volume (V): $\mathbf{m}^{\mathbf{3}}$ Unit of Temp (T): K $\mathrm{n}=$ moles $R=8.31$

Converting temperature
${ }^{\circ} \mathrm{C} \rightarrow$ K add 273

## 3. For solutions



Unit of concentration: $\mathrm{mol} \mathrm{dm}^{-3}$ or M $\xrightarrow{\text { Unit of Volume: } \mathrm{dm}^{3}}$

Converting volumes

$$
\begin{aligned}
& \mathrm{cm}^{3} \rightarrow \mathrm{dm}^{3} \div 1000 \\
& \mathrm{~cm}^{3} \rightarrow \mathrm{~m}^{3} \div 1000000 \\
& \mathrm{dm}^{3} \rightarrow \mathrm{~m}^{3} \div 1000
\end{aligned}
$$

## Using Equation 1

## 1. For pure solids, liquids and gases



Molar Mass (Mr) for a compound can be calculated by adding up the mass numbers (from the periodic table) of each element in the compound
eg $\mathrm{CaCO}_{3}=40.1+12.0+16.0 \times 3=100.1$

Unit of Mass: grams
Unit of moles: mol

$$
\begin{aligned}
& \text { Example 1: What is the number of moles in } 35.0 \mathrm{~g} \text { of } \\
& \begin{aligned}
& \mathrm{CuSO}_{4} \text { ? } \\
& \text { moles }=\mathrm{mass} / \mathrm{Mr} \\
&=35.0 /(63.5+32.0+16.0 \times 4) \\
&=0.219 \mathrm{~mol}
\end{aligned}
\end{aligned}
$$

Many questions will involve changes of units $1000 \mathrm{mg}=1 \mathrm{~g}$ $1000 \mathrm{~g}=1 \mathrm{~kg}$ $1000 \mathrm{~kg}=1$ tonne

## Significant Figures

Give your answers to the same number of significant figures as the number of significant figures for the data you given in a question. If you are given a mixture of different significant figures, use the smallest

Example 2: What is the number of moles in 75.0 mg of $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ?

$$
\text { moles }=\operatorname{mass} / \mathrm{Mr}
$$

$$
=0.075 /(40+32.0+16.0 \times 4+18.0 \times 2)
$$

$$
=4.36 \times 10^{-4} \mathrm{~mol}
$$

## Avogadro's Constant

The mole is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams of carbon- 12 .

## Avogadro's Constant (L)

There are $6.022 \times 10^{23}$ atoms in 12 grams of carbon-12. Therefore explained in simpler terms 'One mole of any specified entity contains $6.022 \times 10^{23}$ of that entity':

Avogadro's Constant can be used for atoms, molecules and ions

1 mole of copper atoms will contain $6.022 \times 10^{23}$ atoms
1 mole of carbon dioxide molecules will contain $6.022 \times 10^{23}$ molecules 1 mole of sodium ions will contain $6.022 \times 10^{23}$ ions

## No of particles = moles of substance (in mol) X Avogadro's constant

Example 3 : How many atoms of Tin are there
in a 6.00 g sample of Tin metal?
moles $=$ mass $/ \mathrm{Ar}$
$=6.00 / 118.7$
$=0.05055 \mathrm{~mol}$
Number atoms $=$ moles $\times 6.022 \times 10^{23}$

$$
\begin{aligned}
& =0.05055 \times 6.022 \times 10^{23} \\
& =3.04 \times 10^{22}
\end{aligned}
$$

Example 4 : How many chloride ions are there in a $25.0 \mathrm{~cm}^{3}$ of a solution of magnesium chloride of concentration $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ ?
moles $=$ concentration $\times$ Volume
$\mathrm{MgCl}_{2}=0.400 \times \mathbf{0 . 0 2 5 0}$

$$
=0.0100 \mathrm{~mol}
$$

moles of chloride ions $=0.0100 \times 2$

$$
=0.0200
$$

There are two moles of chloride ions for every one mole of $\mathrm{MgCl}_{2}$
Number ions of $\mathrm{Cl}^{-}=$moles $\times 6.022 \times 10^{23}$

$$
\begin{aligned}
& =0.0200 \times 6.022 \times 10^{23} \\
& =1.20 \times 10^{22} \text { (to } 3 \text { sig fig) }
\end{aligned}
$$

## Density

Density calculations are usually used with pure liquids but to work out the mass from a measured volume. It can also be used with solids and gases.

| density $=$mass <br> Volume | Density is usually given in $\mathrm{g} \mathrm{cm}^{-3}$ <br> Care needs to be taken if different units are <br> used. |
| :--- | :--- |

Example 5 : How many molecules of ethanol are there in a $0.500 \mathrm{dm}^{3}$ of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ liquid ? The density of ethanol is $0.789 \mathrm{~g} \mathrm{~cm}^{-3}$

Mass $=$ density $x$ Volume
ethanol

$$
=0.789 \times 500
$$

$$
=394.5 \mathrm{~g}
$$

moles $=$ mass $/ \mathrm{Mr}$
$=394.5 / 46.0$
$=8.576 \mathrm{~mol}$
Number of molecules $=$ moles $\times 6.022 \times 10^{23}$

$$
\begin{aligned}
& =8.576 \times 6.022 \times 10^{23} \\
& =5.16 \times 10^{24} \text { (to } 3 \mathrm{sig} \text { fig) }
\end{aligned}
$$

Example 6 : There are 980 mol of pure gold in a bar measuring 10 cm by 20 cm by 50 cm . What is the density of gold in $\mathrm{kg} \mathrm{dm}^{-3}$

$$
\begin{aligned}
& \begin{aligned}
\text { Mass }= & \text { moles } \times \mathrm{Mr} \\
& =980 \times 197 \\
& =193060 \mathrm{~g} \\
& =193.06 \mathrm{~kg} \\
\text { Volume } & =10 \times 20 \times 50 \\
& =10000 \mathrm{~cm}^{3} \\
& =10 \mathrm{dm}^{3}
\end{aligned} \\
& \begin{aligned}
\text { density } & =\text { mass } / \text { volume } \\
& =193 / 10 \\
& =19.3 \mathrm{~kg} \mathrm{dm}^{-3}
\end{aligned}
\end{aligned}
$$

Definition: An empirical formula is the simplest ratio of atoms of each element in the compound.

## General method

Step 1 : Divide each mass (or \% mass) by the atomic mass of the element
Step 2 : For each of the answers from step 1 divide by the smallest one of those numbers.

The same method can be used for the following types of data:

1. masses of each element in the compound

Step 3: sometimes the numbers calculated in step 2 will need to be multiplied up to
2. percentage mass of each give whole numbers. element in the compound

These whole numbers will be the empirical formula.

Example 7 : Calculate the empirical formula for a compound that contains 1.82 g of $\mathrm{K}, 5.93 \mathrm{~g}$ of I and 2.24 g of O

Step1: Divide each mass by the atomic mass of the element to give moles

$$
\begin{array}{rlrl}
\mathrm{K} & =1.82 / 39.1 & \mathrm{I} & =5.93 / 126.9 \\
& O=2.24 / 16 \\
& =0.0465 \mathrm{~mol} & & =0.0467 \mathrm{~mol}
\end{array}
$$

Step 2 For each of the answers from step 1 divide by the smallest one of those numbers.

$$
\begin{aligned}
\mathrm{K} & =0.0465 / 0.0465 \quad \mathrm{I} & =0.0467 / 0.0465 \quad \mathrm{O}=0.14 / 0.0465 \\
& =1 & =1 \\
& \text { Empirical formula }=\mathrm{KIO}_{3} &
\end{aligned}
$$

## Molecular formula from empirical formula

Definition: A molecular formula is the actual number of atoms of each element in the compound.

From the relative molecular mass (Mr) work out how many times the mass of the empirical formula fits into the Mr .

Example 8 : work out the molecular formula for the compound with an empirical formula of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ and a $\mathrm{M}_{\mathrm{r}}$ of 116
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ has a mass of 58
The empirical formula fits twice into $M_{r}$ of 116

$$
\text { So molecular formula is } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}
$$

The Mr does not need to be exact to turn an empirical formula into the molecular formula because the molecular formula will be a whole number multiple of the empirical formula

Remember the Mr of a substance can be found out from using a mass spectrometer. The molecular ion ( the peak with highest $\mathrm{m} / \mathrm{z}$ ) will be equal to the Mr .


A Hydrated salt contains water of crystallisation

$$
\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}
$$

hydrated copper (II) nitrate(V).

$$
\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}
$$

Anhydrous copper (II) nitrate(V).

## Example 9

$\mathrm{Na}_{2} \mathrm{SO}_{4} . \mathrm{xH}_{2} \mathrm{O}$ has a molar mass of 322.1, Calculate the value of $x$
Molar mass $\mathrm{xH}_{2} \mathrm{O}=322.1-(23 \times 2+32.1+16 \times 4)$

$$
=180
$$

$X=180 / 18$
$=10$

## Heating in a crucible

This method could be used for measuring mass loss in various thermal decomposition reactions and also for mass gain when reacting magnesium in oxygen.

The water of crystallisation in calcium sulfate crystals can be removed as water vapour by heating as shown in the following equation.
$\mathrm{CaSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+x \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

## Method.

-Weigh an empty clean dry crucible and lid.

- Add 2 g of hydrated calcium sulfate to the crucible and weigh again
- Heat strongly with a Bunsen for a couple of minutes
- Allow to cool
- Weigh the crucible and contents again
- Heat crucible again and reweigh until you reach a constant mass ( do this to ensure reaction is complete).

Large amounts of hydrated calcium sulfate, such as 50 g , should not be used in this experiment as the decomposition is likely to be incomplete.

The crucible needs to be dry otherwise a wet crucible would give an inaccurate result. It would cause mass loss to be too large as the water would be lost when heating.

The lid improves the accuracy of the experiment as it prevents loss of solid from the crucible but should be loose fitting to allow gas to escape.


Small amounts of the solid, such as 0.100 g , should not be used in this experiment as the percentage uncertainties in weighing will be too high.

Example 10. 3.51 g of hydrated zinc sulfate were heated and 1.97 g of anhydrous zinc sulfate were obtained.
Use these data to calculate the value of the integer $x$ in $\mathrm{ZnSO}_{4} \cdot x_{2} \mathrm{O}$
Calculate the mass of $\mathrm{H}_{2} \mathrm{O}=3.51-1.97=1.54 \mathrm{~g}$

| Calculate moles of  <br> $\mathrm{ZnSO}_{4}$ $=\frac{1.97}{161.5}$ | Calculate moles of <br> $\mathrm{H}_{2} \mathrm{O}$ | $=\frac{1.54}{18}$ |  |
| ---: | :--- | :--- | :--- |
|  | $=0.0122$ |  | $=0.085$ |


| Calculate ratio of mole of <br> $\mathrm{ZnSO}_{4}$ to $\mathrm{H}_{2} \mathrm{O}$ | $\frac{0.0122}{0.0122}$ |  |
| :--- | :--- | :--- |
|  | $=1$ | $=\frac{0.085}{0.0122}$ |
|  |  |  |
|  | $X=7$ |  |

## Concentration of Solutions

A solution is a mixture formed when a solute dissolves in a solvent. In chemistry we most commonly use water as the solvent to form aqueous solutions. The solute can be a solid, liquid or a gas.

Molar concentration can be measured for solutions. This is calculated by dividing the amount in moles of the solute by the volume of the solution. The volume is measure is $\mathrm{dm}^{3}$. The unit of molar concentration is $\mathrm{mol} \mathrm{dm}^{-3}$; it can also be called molar using symbol M

```
Concentration = moles
```

Unit of concentration: $\mathrm{mol} \mathrm{dm}^{-3}$ or M
Unit of Volume: $\mathbf{d m}^{\mathbf{3}}$

## Converting volumes

A $\mathrm{m}^{3}$ is equivalent to a cube $100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm}=1000000 \mathrm{~cm}^{3}$

A dm ${ }^{3}$ is equivalent to a cube $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}=1000 \mathrm{~cm}^{3}$

$$
1 \mathrm{dm}^{3}=1 \text { litre }
$$

$1 \mathrm{dm}^{3}$ or 1 litre

$\mathrm{Acm}{ }^{3}$ is equivalent to a cube $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$
$1 \mathrm{~cm}^{3}=1 \mathrm{ml}$
$1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}$ or 1000 L
To convert $\mathrm{m}^{3}$ into $\mathrm{dm}^{3}$ multiply by 1000
$1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$ or 1000 mL
To convert $\mathrm{cm}^{3}$ into $\mathrm{dm}^{3}$ divide by 1000

$$
\begin{aligned}
& \mathrm{cm}^{3} \rightarrow \mathrm{dm}^{3} \div 1000 \\
& \mathrm{~cm}^{3} \rightarrow \mathrm{~m}^{3} \div 1000000 \\
& \mathrm{dm}^{3} \rightarrow \mathrm{~m}^{3} \div 1000
\end{aligned}
$$

Example 11 Calculate the concentration of solution made by dissolving 5.00 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in $250 \mathrm{~cm}^{3}$ water

$$
\begin{aligned}
\text { moles } & =\mathrm{mass} / \mathrm{Mr} \\
& =5 /(23.0 \times 2+12+16 \times 3) \\
& =0.0472 \mathrm{~mol} \\
\text { conc } & =\mathrm{moles} / \text { Volume } \\
& =0.0472 / 0.25 \\
& =0.189 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

Example 12 Calculate the concentration of solution made by dissolving 10 kg of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in $0.50 \mathrm{~m}^{3}$ water

$$
\begin{aligned}
\text { moles } & =\mathrm{mass} / \mathrm{Mr} \\
& =10000 /(23.0 \times 2+12+16 \times 3) \\
& =94.2 \mathrm{~mol} \\
\text { conc } & =\text { molest } / \text { Volume } \\
& =94.2 / 500 \\
& =0.19 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

## Mass Concentration

The concentration of a solution can also be measured in terms of mass of solute per volume of solution

## Mass Concentration = mass

 volumeTo turn concentration measured in $\mathrm{mol} \mathrm{dm}^{-3}$ into concentration measured in $\mathrm{g} \mathrm{dm}^{-3}$ multiply by Mr of the substance
conc in $\mathrm{g} \mathrm{dm}^{-3}=$ conc in $\mathrm{mol} \mathrm{dm}^{-3} \times \mathrm{Mr}$
The concentration in $\mathrm{g} \mathrm{dm}^{-3}$ is the same as the mass of solute dissolved in $1 \mathrm{dm}^{3}$

Unit of mass concentration: $\mathrm{g} \mathrm{dm}^{-3}$
Unit of Mass $\mathbf{g}$
Unit of Volume: $\mathbf{d m}^{\mathbf{3}}$

## Ions dissociating

When soluble ionic solids dissolve in water they will dissociate into separate ions. This can lead to the concentration of ions differing from the concentration of the solute.

## Example 13

If $5.86 \mathrm{~g}(0.1 \mathrm{~mol})$ of sodium chloride $(\mathrm{NaCl})$ is dissolved in $1 \mathrm{dm}^{3}$ of water then the concentration of sodium chloride solution would be $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$.
However the 0.1 mol sodium chloride would split up to form 0.1 mol of sodium ions and 0.1 mol of chloride ions. The concentration of sodium ions is therefore $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ and the concentration of chloride ions is also $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$

## Example 14

If $9.53 \mathrm{~g}(0.1 \mathrm{~mol})$ of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ is dissolved in $1 \mathrm{dm}^{3}$ of water then the concentration of magnesium chloride solution $\left(\mathrm{MgCl}_{2}\right.$ aq) would be $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$.
However the 0.1 mol magnesium chloride would split up to form 0.1 mol of magnesium ions and 0.2 mol of chloride ions. The
$\mathrm{NaCl}(\mathrm{s})+\mathrm{aq} \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
$0.1 \mathrm{~mol} \quad 0.1 \mathrm{~mol} \quad 0.1 \mathrm{~mol}$
0.1 mol 0.1mol
concentration of magnesium ions is therefore $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ and the concentration of chloride ions is now $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$

## Making a solution

- Weigh the sample bottle containing the required mass of solid on a 2 dp balance
- Transfer to beaker and reweigh sample bottle
- Record the difference in mass

Alternatively the known mass of solid in the weighing bottle could be transferred to beaker, washed and washings added to the beaker.

- Add $100 \mathrm{~cm}^{3}$ of distilled water to the beaker. Use a glass rod to stir to help dissolve the solid.
-Sometimes the substance may not dissolve well in cold water so the beaker and its contents could be heated gently until all the solid had dissolved.
- Pour solution into a $250 \mathrm{~cm}^{3}$ graduated flask via a funnel.
- Rinse beaker and funnel and add washings from the beaker and glass rod to the volumetric flask.
- make up to the mark with distilled water using a dropping pipette for last few drops.
- Invert flask several times to ensure uniform solution.

$$
\mathrm{MgCl}_{2}(\mathrm{~s})+\mathrm{aq} \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

$$
0.1 \mathrm{~mol} \quad 0.1 \mathrm{~mol} \quad 0.2 \mathrm{~mol}
$$

## Dilutions

## Diluting a solution

-Pipette $25 \mathrm{~cm}^{3}$ of original solution into a $250 \mathrm{~cm}^{3}$ volumetric flask
-make up to the mark with distilled water using a dropping pipette for last few drops.

- Invert flask several times to ensure uniform solution.

Using a volumetric pipette is more accurate than a measuring cylinder because it has a smaller uncertainty

Use a teat pipette to make up to the mark in volumetric flask to ensure volume of solution accurately measured and one doesn't go over the line

## Calculating Dilutions

Diluting a solution will not change the amount of moles of solute present but increase the volume of solution and hence the concentration will lower
moles= volume x concentration
If amount of moles does not change then
original volume x original concentration $=$ new diluted volume x new diluted concentration
so

$$
\text { new diluted concentration }=\text { original concentration } \times \frac{\text { original volume }}{\text { new diluted volume }}
$$

The new diluted volume will be equal to the original volume of solution added + the volume of water added.

## Example 15

$50 \mathrm{~cm}^{3}$ of water are added to $150 \mathrm{~cm}^{3}$ of a $0.20 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ solution. Calculate the concentration of the diluted solution.
new diluted concentration $=$ original concentration $\times$ original volume
new diluted volume
new diluted concentration $=0.20 \times \underline{0.150}$
0.200
$=0.15 \mathrm{~mol} \mathrm{dm}^{-3}$

## Example 16

Calculate the volume of water in $\mathrm{cm}^{3}$ that must be added to dilute $5.00 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid so that it has a concentration of $0.050 \mathrm{~mol} \mathrm{dm}^{-3}$ ?
Moles original solution $=$ conc $\times$ vol

$$
=1.00 \times 0.005
$$

$$
=0.005
$$

New volume = moles /conc

$$
=\quad 0.005 / 0.05
$$

$$
=0.1 \mathrm{dm}^{3}=100 \mathrm{~cm}^{3}
$$

Volume of water added $=100-5=95 \mathrm{~cm}^{3}$

## Safety and hazards

Irritant - dilute acid and alkalis- wear googles
Corrosive- stronger acids and alkalis wear goggles
Flammable - keep away from naked flames
Toxic - wear gloves- avoid skin contact- wash hands after use
Hazardous substances in low concentrations or amounts will not pose the same risks as the Oxidising- Keep away from flammable / easily oxidised materials

## Ideal Gas Equation

The ideal gas equation applies to all gases and mixtures of gases. If a mixture of gases is used the value $n$ will be the total moles of all gases in the mixture.

The biggest problems students have with this equation is choosing and converting to the correct units, so pay close attention to the units.

```
PV = nRT
```

Unit of Pressure (P): Pa
Unit of Volume (V): $\mathbf{m}^{\mathbf{3}}$
Unit of Temp (T): K
$\mathrm{n}=$ moles

$$
\mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
$$

Example 17: Calculate the mass of $\mathrm{Cl}_{2}$ gas that has a pressure of

## Converting temperature

 100 kPa , temperature $20^{\circ} \mathrm{C}$, volume $500 \mathrm{~cm}^{3}$. ( $\mathrm{R}=8.31$ )$$
{ }^{\circ} \mathrm{C} \rightarrow \mathrm{~K} \text { add } 273
$$

```
moles= PV/RT
100 kPa = 100 000 Pa
    = 100 000 x 0.0005 / (8.31 < 293)
            \longleftarrow
    = 0.0205 mol
    Mass = moles x Mr
        = 0.0205 x (35.5 x2)
        = 1.46g
```

Example 18: 0.150 g of a volatile liquid was injected into a sealed gas syringe. The gas syringe was placed in an oven at $70^{\circ} \mathrm{C}$ at a pressure of 100 kPa and a volume of $80.0 \mathrm{~cm}^{3}$ was measured. Calculate the Mr of the volatile liquid ( $\mathrm{R}=8.31$ )

```
moles = PV/RT
        = 100 000 x 0.00008 / (8.31 x 343)
        = 0.00281 mol
    Mr = mass/moles
        = 0.15 / 0.00281
        = 53.4 \mp@subsup{\textrm{g mol}}{}{-1}
```


## Using a gas syringe

Gas syringes can be used for a variety of experiments where the volume of a gas is measured, possibly to work out moles of gas or to follow reaction rates.

The volume of a gas depends on pressure and temperature so when recording volume it is important to note down the temperature and pressure of the room.

Moles of gas can be calculated from gas volume (and temperature and pressure) using ideal gas equation $\mathrm{PV}=\mathrm{nRT}$

Potential errors in using a gas syringe -gas escapes before bung inserted -syringe sticks

- some gases like carbon dioxide or sulphur dioxide are soluble in water so the true amount of gas is not measured.

Make sure you don't leave gaps in your diagram where gas could escape


If drawing a gas syringe make sure you draw it with some measurement markings on the barrel to show measurements can be made.

## Changing the Conditions of a gas

Questions may involve the same amount of gas under different conditions.

## Example 19

$40 \mathrm{~cm}^{3}$ of oxygen and $60 \mathrm{~cm}^{3}$ of carbon dioxide, each at 298 K and 100 kPa , were placed into an evacuated flask of volume $0.50 \mathrm{dm}^{3}$. What is the pressure of the gas mixture in the flask at 298 K ?

There are two approaches to solving this

1. Work out moles of gas using ideal gas equation then put back into ideal gas equation with new conditions
2. Or combine the equation $n=P V / R T$ as on right

Can do this as moles of gas do not change
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$

As Temperature is the same can make the above equation $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$

$$
\begin{aligned}
P_{2} & =P_{1} V_{1} / V_{2} \\
& =100000 \times 1 \times 10^{-4} / 5 \times 10^{-4} \\
& =20000 \mathrm{~Pa}
\end{aligned}
$$

## Reacting Volumes of Gas

Equal volumes of any gases measured under the same conditions of temperature and pressure contain equal

1 mole of any gas at room pressure (1atm) and room temperature $25^{\circ} \mathrm{C}$ will have the volume of $24 \mathrm{dm}^{3}$

Volumes of gases reacting in a balanced equation can be calculated by simple ratio

Example 20 If one burnt $500 \mathrm{~cm}^{3}$ of methane at 1atm and 300 K what volume of Oxygen would be needed and what volume of $\mathrm{CO}_{2}$ would be given off under the same conditions?


Example 21 An important reaction which occurs in the catalytic converter of a car is
$2 \mathrm{CO}(\mathrm{g})+2 \mathrm{NO}(\mathrm{g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$
In this reaction, when $500 \mathrm{~cm}^{3}$ of CO reacts with $500 \mathrm{~cm}^{3}$ of NO at $650^{\circ} \mathrm{C}$ and at 1 atm .
Calculate the total volume of gases produced at the same temperature and pressure ?

$$
\begin{array}{cc}
2 \mathrm{CO}(\mathrm{~g})+\underset{\mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+}{2 \mathrm{~N}}(\mathrm{~g}) & \text { total volume of gases produced }=750 \mathrm{~cm}^{3} \\
500 \mathrm{~cm}^{3} & 500 \mathrm{~cm}^{3} \quad 500 \mathrm{~cm}^{3} \quad 250 \mathrm{~cm}^{3}
\end{array}
$$

## Converting quantities between different substances using a balanced equation

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

The balancing (stoichiometric) numbers are mole ratios e.g. 1 mole of $\mathrm{N}_{2}$ reacts with 3 moles of $\mathrm{H}_{2}$ to produce 2 moles of $\mathrm{NH}_{3}$

Typically we are given a quantity of one substance and are asked to work out a quantity for another substance in the reaction. Any of the above three equations can be used.

## 1. For pure solids, liquids and gases



## 2. For gases

$\mathbf{P V}=\mathbf{n R T}$

## 3. For solutions

## Concentration = moles volume

## Step 1:

Use one of the above 3 equations to convert any given quantity into moles Mass $\rightarrow$ moles
PVT of gas $\rightarrow$ moles
Conc and vol of solution $\rightarrow$ moles

Step 2:
Use balanced equation to convert moles of initial substance into moles of second substance

## Step 3

Convert moles of second substance into quantity question asked for using relevant equation e.g. Moles, $\mathrm{Mr} \rightarrow$ mass

Mole, P, T gas $\rightarrow$ vol gas
Moles, vol solution $\rightarrow$ conc

Example 22: Calculate the mass of carbon dioxide produced from heating 5.50 g of sodium hydrogencarbonate.
$2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Step 1: calculate moles of sodium hydrogencarbonate
Moles = mass $/ \mathrm{Mr}$

$$
\begin{aligned}
& =5.50 / 84 \\
& =0.0655 \mathrm{~mol}
\end{aligned}
$$

Step 2: use balanced equation to give moles of $\mathrm{CO}_{2}$
2 moles $\mathrm{NaHCO}_{3}: 1$ moles $\mathrm{CO}_{2}$
So $0.0655 \mathrm{HNO}_{3}: 0.0328 \mathrm{moles} \mathrm{CO}_{2}$
Step 3: calculate mass of $\mathrm{CO}_{2}$

$$
\begin{aligned}
\text { Mass } & =\text { moles } \times \mathrm{Mr} \\
& =0.0328 \times 44.0 \\
& =1.44 \mathrm{~g}
\end{aligned}
$$

Example 24: What is the total volume of gas produced in $\mathrm{dm}^{3}$ at 333 K and 100 kPa when 0.651 g of magnesium nitrate decomposes when heated?
$2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})}+4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
Step 1: calculate moles of magnesium nitrate
Moles = mass / Mr

$$
=0.651 / 148.3
$$

$$
=0.00439 \mathrm{~mol}
$$

Step 2: use balanced equation to give moles of gas produced
2 moles $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}: 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$ i.e. 5 moles of gas So $0.00439 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}: 0.01098(0.00439 \times 5 / 2)$ moles gas

Step 3: calculate volume of gas
Volume $=\mathrm{nRT} / \mathrm{P}$

$$
\begin{aligned}
& =(0.01098 \times 8.31 \times 333) / 100000 \\
& =0.000304 \mathrm{~m}^{3} \\
& =0.303 \mathrm{dm}^{3}
\end{aligned}
$$

Example 23: $23.6 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ neutralised $25.0 \mathrm{~cm}^{3}$ of 0.150 M
NaOH . Calculate the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Step 1: calculate moles of sodium hydroxide
Moles = conc $x$ vol

$$
\begin{aligned}
& =0.150 \times 0.025 \\
& =0.00375 \mathrm{~mol}
\end{aligned}
$$

Step 2: use balanced equation to give moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
2 moles NaOH : 1 moles $\mathrm{H}_{2} \mathrm{SO}_{4}$
So $0.00375 \mathrm{NaOH}: 0.001875 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
Step 3 calculate concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ conc $=$ moles/Volume

$$
\begin{aligned}
& =0.001875 / 0.0236 \\
& =0.0794 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

Example 25: Calculate the mass of copper that reacts completely with $150 \mathrm{~cm}^{3}$ of $1.60 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid
$3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
Step 1: calculate moles of nitric acid
Moles = conc $x$ vol

$$
\begin{aligned}
& =1.6 \times 0.15 \\
& =0.24 \mathrm{~mol}
\end{aligned}
$$

Step 2: use balanced equation to give moles of Cu
8 moles $\mathrm{HNO}_{3}: 3$ moles Cu
So $0.24 \mathrm{HNO}_{3}: 0.09\left(0.24 x^{3} / 8\right) \mathrm{mol} \mathrm{Cu}$
Step 3: calculate mass of Cu

$$
\begin{aligned}
\text { Mass } & =\text { moles } \times \mathrm{Mr} \\
& =0.09 \times 63.5 \\
& =5.71 \mathrm{~g}
\end{aligned}
$$

## Limiting and excess reactants

Example 26 Calculate the maximum mass of titanium that could be produced from reacting 100 g of TiCl ${ }_{4}$ with 80.0 g of sodium.
$\mathrm{TiCl}_{4}+4 \mathrm{Na} \rightarrow 4 \mathrm{NaCl}+\mathrm{Ti}$
Step 1: calculate amount, in mol, $\mathrm{TiCl}_{4}$
Step 1: calculate amount, in mol, Na
amount = mass $/ \mathrm{Mr}$

$$
\begin{aligned}
& =100 / 189.9 \\
& =0.527 \mathrm{~mol}
\end{aligned}
$$

amount = mass $/ \mathrm{Mr}$

$$
\begin{aligned}
& =80 / 23.0 \\
& =3.48 \mathrm{~mol}
\end{aligned}
$$

Step 2 use balanced equation to work out which reactant is in excess
Using $1 \mathrm{TiCl}_{4}: 4 \mathrm{Na}$ ratio we can see that 0.527 mol of $\mathrm{TiCl}_{4}$ should react with 2.108 mol of Na . We actually have 3.48 mol of Na which is an excess of 1.372 mol . We can complete calculation using the limiting reactant of $\mathrm{TiCl}_{4}$

Step 3: use balanced equation to calculate amount in mol of Ti formed
$1 \mathrm{~mol} \mathrm{TiCl}_{4}: 1$ mole Ti
So $0.527 \mathrm{~mol} \mathrm{TiCl}_{4}$ produces 0.527 mole Ti
Step 4: calculate mass of Ti formed

$$
\begin{aligned}
\text { Mass } & =\text { amount } \times \mathrm{Mr} \\
& =0.527 \times 47.9 \\
& =25.2 \mathrm{~g}
\end{aligned}
$$

\% Yield and \% Atom economy

percentage yield $=\underset{\text { theoretical yield }}{\text { actual yield }} \times 100 \quad$| percentage |
| :--- |
| atom economy |$=\frac{\text { Mass of useful products }}{\text { Mass of all reactants }} \times 100$

Example 27: What is the \% atom economy for the following reaction where Fe is the desired product assuming the reaction goes to completion?

Do take into account balancing numbers when working out \% atom economy.

Example 28: 25.0g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ was reacted and it produced 10.0 g of Fe . Calculate the percentage yield.
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
First calculate maximum mass of Fe that could be produced
Step 1: work out moles of Iron oxide
Moles $=$ mass $/ \mathrm{Mr}$

$$
=25.0 / 159.6
$$

$$
=0.1566 \mathrm{~mol}
$$

Step 2: use balanced equation to give moles of Fe
1 moles $\mathrm{Fe}_{2} \mathrm{O}_{3}: 2$ moles Fe
So $0.1566 \mathrm{Fe}_{2} \mathrm{O}_{3}: 0.313 \mathrm{moles} \mathrm{Fe}$
Step 3: work out mass of Fe

$$
\begin{aligned}
\text { Mass }= & \text { moles } \times \mathrm{Mr} & \% \text { yield } & =\text { (actual yield/theoretical yield }) \times 100 \\
& =0.313 \times 55.8 & & =(10 / 17.5) \times 100 \\
& =17.5 \mathrm{~g} & & =57.1 \%
\end{aligned}
$$

## Titrations

## The method for carrying out the titration

-rinse equipment (burette with acid, pipette with alkali, conical flask with distilled water)
-pipette $25 \mathrm{~cm}^{3}$ of alkali into conical flask
-touch surface of alkali with pipette ( to ensure correct amount is added)
-adds acid solution from burette
-make sure the jet space in the burette is filled with acid
-add a few drops of indicator and refer to colour change at end point
-phenolphthalein [pink (alkali) to colourless (acid): end point pink
colour just disappears] [use if NaOH is used]
-methyl orange [yellow (alkali) to red (acid): end point orange]
[use if HCl is used]
-use a white tile underneath the flask to help observe the colour change
-add acid to alkali whilst swirling the mixture and add acid dropwise at end point
-note burette reading before and after addition of acid
-repeats titration until at least $\mathbf{2}$ concordant results are obtained- two readings within 0.1 of each other

## Working out average titre results

Only make an average of the concordant titre results
If $\mathbf{2}$ or $\mathbf{3}$ values are within $\mathbf{0 . 1 0} \mathrm{cm}^{\mathbf{3}}$ and therefore concordant or close then we can say results are accurate and repeatable and the titration technique is good/ consistent

## Recording results

-Results should be clearly recorded in a table
-Result should be recorded in full (i.e. both initial and final readings)
-Record titre volumes to $\mathbf{2 d p}\left(0.05 \mathrm{~cm}^{3}\right)$

## Safety precautions

## Acids and alkalis are corrosive

 (at low concentrations acids are irritants)Wear eye protection and gloves
If spilled immediately wash affected parts after spillage

If substance is unknown treat it as potentially toxic and wear gloves.

> If the jet space is not filled properly prior to commencing the titration it will lead to errors if it then fills during the titration, leading to a larger than expected titre reading.

A conical flask is used in preference to a beaker because it is easier to swirl the mixture in a conical flask without spilling the contents.

Indicators are generally weak acids so only add a few drops of them. If too much is added it will affect the titration result

Distilled water can be added to the conical flask during a titration to wash the sides of the flask so that all the acid on the side is washed into the reaction mixture to react with the alkali.
It does not affect the titration reading as water does not react with the reagents or change the number of moles of acid added.

## Common Titration Equations

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}-\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \hline
\end{aligned}
$$

## Titrating mixtures

If titrating a mixture to work out the concentration of an active ingredient it is necessary to consider if the mixture contains other substances that have acid base properties.
If they don't have acid base properties we can titrate with confidence.

## Testing batches

In quality control it will be necessary to do titrations/testing on several samples as the amount/concentration of the chemical being tested may vary between samples.

## Safely dealing with excess acid

Sodium hydrogen carbonate $\left(\mathrm{NaHCO}_{3}\right)$ and calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ are good for neutralising excess acid in the stomach or acid spills because they are not corrosive and will not cause a hazard if used in excess. They also have no toxicity if used for indigestion remedies but the $\mathrm{CO}_{2}$ produced can cause wind.
Magnesium hydroxide is also suitable for dealing with excess stomach acid as it has low solubility in water and is only weakly alkaline so not corrosive or dangerous to drink (unlike the strong alkali sodium hydroxide). It will also not produce any carbon dioxide gas.

More complicated titration calculations- taking samples

Example 29: A $25.0 \mathrm{~cm}^{3}$ sample of vinegar was diluted in a $250 \mathrm{~cm}^{3}$ volumetric flask. This was then put in a burette and $23.10 \mathrm{~cm}^{3}$ of the diluted vinegar neutralised $25.0 \mathrm{~cm}^{3}$ of 0.100 M NaOH . What is the concentration of the vinegar in $\mathrm{g} \mathrm{dm}^{-3}$ ?

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

Step 1: work out moles of sodium hydroxide
moles = conc x vol

$$
\begin{aligned}
& =0.10 \times 0.025 \\
& =0.00250 \mathrm{~mol}
\end{aligned}
$$

Step 2: use balanced equation to give moles of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ 1 moles $\mathrm{NaOH}: 1$ moles $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
So $0.00250 \mathrm{NaOH}: 0.00250$ moles $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
Step 3 work out concentration of diluted $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ in 23.1 (and $250 \mathrm{~cm}^{3}$ ) in $\mathrm{mol} \mathrm{dm}^{-3}$
conc $=$ moles/Volume

$$
\begin{aligned}
= & 0.00250 / 0.0231 \\
& =0.108 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

Step 4 work out concentration of original concentrated $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $25 \mathrm{~cm}^{3}$ in moldm ${ }^{-3}$
conc $=0.108 \times 10=1.08 \mathrm{~mol} \mathrm{dm}^{-3}$
Step 5 work out concentration of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ in original concentrated $25 \mathrm{~cm}^{3}$ in $\mathrm{gdm}^{-3}$

$$
\begin{aligned}
\text { conc in } \mathrm{gdm}^{-3} & =\text { conc in } \mathrm{mol} \mathrm{dm} \\
& \times 1.08 \times 60=64.8 \mathrm{~g} \mathrm{dm}^{-3} \\
& =1.08
\end{aligned}
$$

Example 30. An unknown metal carbonate reacts with hydrochloric acid according to the following equation. $\mathrm{M}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{MCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ A 3.96 g sample of $\mathrm{M}_{2} \mathrm{CO}_{3}$ was dissolved in distilled water to make $250 \mathrm{~cm}^{3}$ of solution. A $25.0 \mathrm{~cm}^{3}$ portion of this solution required $32.8 \mathrm{~cm}^{3}$ of $0.175 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid for complete reaction. Calculate the Mr of $\mathrm{M}_{2} \mathrm{CO}_{3}$ and identify the metal M

1. Calculate the number of moles of HCl used

$$
\begin{aligned}
\text { moles } & =\text { conc } x \text { vol } \\
& =0.175 \times 0.0328 \\
& =0.00574 \mathrm{~mol}
\end{aligned}
$$

2. Work out number of moles of $\mathrm{M}_{2} \mathrm{CO}_{3}$ in $25.0 \mathrm{~cm}^{3}$ put in conical flask
use balanced equation to give moles of $\mathrm{M}_{2} \mathrm{CO}_{3}$
$2 \mathrm{~mol} \mathrm{HCl}: 1 \mathrm{~mol} \mathrm{M}_{2} \mathrm{CO}_{3}$
So $0.00574 \mathrm{NaOH}: 0.00287 \mathrm{~mol} \mathrm{M}_{2} \mathrm{CO}_{3}$
3. Calculate the number of moles $\mathrm{M}_{2} \mathrm{CO}_{3}$ acid in original $250 \mathrm{~cm}^{3}$ of solution

$$
\text { Moles in } 250 \mathrm{~cm}^{3}=0.00287 \times 10
$$

$=0.0287 \mathrm{~mol}$
4. work out the Mr of $\mathrm{M}_{2} \mathrm{CO}_{3}$

$$
\begin{aligned}
& \quad \mathrm{Mr}=\text { mass } / \mathrm{moles} \\
& \quad=3.96 / 0.0287=138.0 \\
& \text { 5. Work out } \operatorname{Ar} \text { of } \mathrm{M}=\frac{(138-12-16 \times 3)}{2} \\
& \text { Ar of } \mathrm{M}=39 \quad \mathrm{M}=\text { potassium }
\end{aligned}
$$

## Common Titration Equations

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}-\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

## Example 31

950 mg of impure calcium carbonate tablet was crushed. 50.0 $\mathrm{cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, an excess, was then added. After the tablet had reacted, the mixture was transferred to a volumetric flask. The volume was made up to exactly $100 \mathrm{~cm}^{3}$ with distilled water. $10.0 \mathrm{~cm}^{3}$ of this solution was titrated with $11.1 \mathrm{~cm}^{3}$ of $0.300 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution.
Calculate the percentage of $\mathrm{CaCO}_{3}$ by mass in the tablet?

1. Calculate the number of moles of sodium hydroxide used

$$
\begin{aligned}
\text { moles } & =\text { conc } x \text { vol } \\
& =0.30 \times 0.0111 \\
& =0.00333 \mathrm{~mol}
\end{aligned}
$$

2. Work out number of moles of hydrochloric acid left in $10.0 \mathrm{~cm}^{3}$ use balanced equation to give moles of HCl

$$
1 \mathrm{~mol} \mathrm{NaOH}: 1 \mathrm{~mol} \mathrm{HCl}
$$

So $0.00333 \mathrm{NaOH}: 0.00333 \mathrm{~mol} \mathrm{HCl}$
3. Calculate the number of moles of hydrochloric acid left in $100 \mathrm{~cm}^{3}$ of solution

$$
\begin{aligned}
\text { Moles in } 100 \mathrm{~cm}^{3} & =0.00333 \times 10 \\
& =0.0333 \mathrm{~mol}
\end{aligned}
$$

4. Calculate the number of moles of HCl that reacted with the indigestion tablet.

In original $\mathrm{HCl} 50.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ there is 0.05 moles

$$
\begin{array}{ll}
\text { moles of } \mathrm{HCl} \text { that } & =0.05-0.0333 \\
\text { reacted with the } & =0.0167 \mathrm{~mol} \\
\text { indigestion tablet. }
\end{array}
$$

```
5 Use balanced equation to give moles of \(\mathrm{CaCO}_{3}\)
\[
\begin{gathered}
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
2 \mathrm{~mol} \mathrm{HCl}: 1 \mathrm{~mol} \mathrm{CaCO}_{3} \\
\text { So } 0.0167 \mathrm{HCl}: 0.00835 \mathrm{~mol} \mathrm{CaCO}_{3}
\end{gathered}
\]
```

6. work out the mass of $\mathrm{CaCO}_{3}$ in original tablet

$$
\begin{aligned}
& \text { mass }=\text { moles } \times \mathrm{Mr} \\
& =0.00835 \times 100=0.835 \mathrm{~g}
\end{aligned}
$$

percentage of
$\mathrm{CaCO}_{3}$ by mass in $=0.835 / 0.950$
x100
the tablet

$$
\text { = } 87.9 \text { \% }
$$

## Uncertainty

## Readings and Measurements

## Readings

the values found from a single judgement when using a piece of equipment

## Measurements

the values taken as the difference between the judgements of two values (e.g. using a burette in a titration)

The uncertainty of a reading (one judgement) is at least $\pm 0.5$ of the smallest scale reading.
The uncertainty of a measurement (two judgements) is at least $\pm 1$ of the smallest scale reading.
Calculating Apparatus Uncertainties
Each type of apparatus has a sensitivity uncertainty
-balance $\quad \pm 0.001 \mathrm{~g} \quad$ (if using a 3 d.p. balance)
-volumetric flask $\pm 0.1 \mathrm{~cm}^{3}$
$-25 \mathrm{~cm}^{3}$ pipette $\pm 0.1 \mathrm{~cm}^{3}$
-burette (start \& end readings and end point) $\quad \pm 0.15 \mathrm{~cm}^{3}$
Calculate the percentage error for each piece of equipment used by
\% uncertainty $= \pm \frac{\text { uncertainty }}{\text { Measurement made on apparatus }}$

| e.g. for burette |
| :--- |
| \% uncertainty $=0.15 / a v e r a g e ~ t i t r e ~ r e s u l t ~ x 100 ~$ |

To calculate the maximum total percentage apparatus uncertainty in the
final result add all the individual equipment uncertainties together.

To decrease the apparatus uncertainties you can either decrease the sensitivity uncertainty by using apparatus with a greater resolution (finer scale divisions) or you can increase the size of the measurement made.

Uncertainty of a measurement using a burette. If the burette used in the titration had an uncertainty for each reading of $+/-0.05 \mathrm{~cm}^{3}$ then during a titration two readings would be taken so the uncertainty on the titre volume would be $+/-0.10 \mathrm{~cm}^{3}$. Then often another 0.05 is added on because of uncertainty identifying the end point colour change

## Reducing uncertainties in a titration

Replacing measuring cylinders with pipettes or burettes which have lower apparatus uncertainty will lower the \% uncertainty.

To reduce the \% uncertainty in a burette reading it is necessary to make the titre a larger volume. This could be done by: increasing the volume and concentration of the substance in the conical flask or by decreasing the concentration of the substance in the burette.

## Reducing uncertainties in measuring mass

Using a balance that measures to more decimal places or using a larger mass will reduce the \% uncertainty in weighing a solid.

Weighing sample before and after addition and then calculating difference will ensure a more accurate measurement of the mass added.

If looking at a series of measurements in an investigation the experiments with the smallest readings will have the highest experimental uncertainties.

## Calculating the percentage difference between the actual value and the calculated value

If we calculated an Mr of 203 and the real value is 214 , then the calculation is as follows:
Calculate difference 214-203 = 11
$\%=11 / 214 \times 100$
=5.41\%

If the \%uncertainty due to the apparatus < percentage difference between the actual value and the calculated value then there is a discrepancy in the result due to other errors.

If the \%uncertainty due to the apparatus > percentage difference between the actual value and the calculated value then there is no discrepancy and all the difference between values can be explained by the sensitivity of the equipment.

