
3.6 Organic Analysis

Mass Spectrometry

When organic molecules are passed through a mass spectrometer, it detects both the whole molecule and fragments of the molecule

Molecular ion formed: $M \rightarrow [M]^{+} + e^{-}$

Definition: **molecular ion** is the molecule with one electron knocked off (It is both an ion and a free radical)

High resolution mass spectrometry can be used to determine the molecular formula of a compound from the accurate mass of the molecular ion

For example, the following molecular formulas all have a rough M_r of 60, but a more precise Mr can give the molecular formula.

e.g.

Mr = 60.02112molecular formula = $C_2H_4O_2$ Mr = 60.05751molecular formula = C_3H_8O Mr = 60.03235molecular formula = CH_4N_2O

High resolution mass spectroscopy can measure the mass to 5 d.p. This can help differentiate between compounds that appear to have similar *M*r (to the nearest whole number)

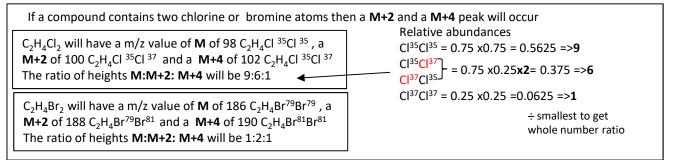
Accurate masses of atoms: H = 1.0078 C = 12.0000 O = 15.9949 N = 14.0031

Carbon has a value of 12.0000 as it is by definintion the standard reference

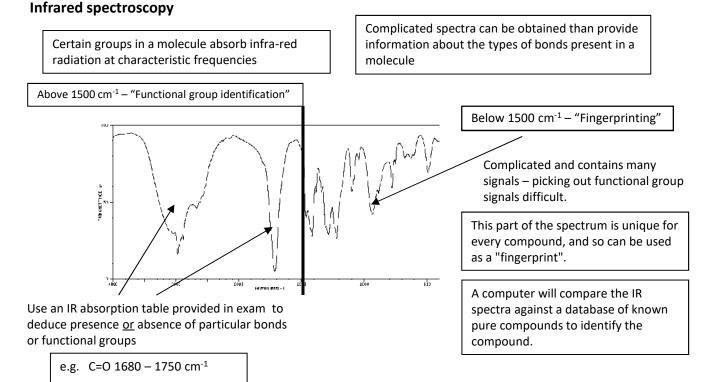
Example 1

A compound is found to have an accurate relative formula mass of 46.0417. It is thought to be either CH_3CH_2OH or $H_2NCH_2NH_2$. Calculate the M_r of each compound to 4 decimal places to work out which one it is.

CH₃CH₂OH = (12.0000 x 2) + (15.9949 x 1) + (1.0078 x6) = 46.0417 H₂NCH₂NH₂. = (12.0000 x 1) + (14.0031 x 2) + (1.0078 x6) = 46.0530


M+2 peak

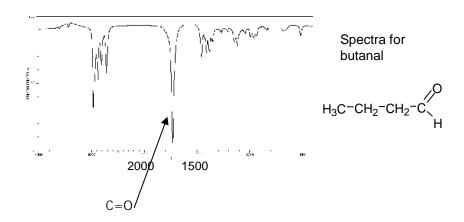
If a compound contains a chlorine or a bromine atom then two molecular ion peaks will occur : a **M** and a **M+2** peak will occur due to the two naturally occurring isotopes of chlorine or bromine.


Chlorine exists as Cl^{35} (75%) and Cl^{37} (25%) Bromine exists as Br^{79} (50%) and Br^{81} (50%)

CH ₃ Cl will have a m/z value of M of 50 CH ₃ Cl 35 and M+2 of 52 CH ₃ Cl 37
The ratio of heights M:M+2 will be 3:1

 $\rm CH_3Br$ will have m/z value of $\,$ M of 94 $\rm CH_3Br^{79}$ and $\rm M+2$ of 96CH_3Br^{81} The ratio of heights $\rm M:M+2$ will be 1:1

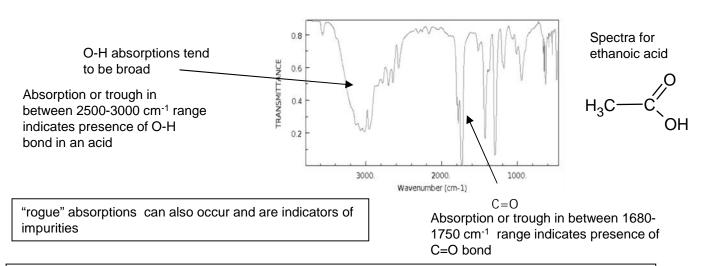
 $C_2H_3Cl_3$ will have a m/z value of **M** of 132 $C_2H_4Cl^{35}Cl^{35}Cl^{35}$, a **M+2** of 134 $C_2H_4Cl^{35}Cl^{35}$ Cl³⁷, a **M+4** of 136 $C_2H_4Cl^{35}Cl^{37}Cl^{37}$ and a **M+6** of 138 $C_2H_4Cl^{37}Cl^{37}Cl^{37}$ The ratio of heights **M:M+2:M+4:M+6** will be 27:27:9:1 Relative abundances $C|^{35}C|^{35}C|^{35} = 0.75 \times 0.75 \times 0.75 = 0.4219 => 27$ $C|^{35}C|^{37}C|^{37} = 0.75 \times 0.75 \times 0.25 \times 3 = 0.4219 => 27$ $C|^{35}C|^{37}C|^{37} = 0.75 \times 0.25 \times 0.25 \times 3 = 0.1406 => 9$ $C|^{37}C|^{37}C|^{37} = 0.25 \times 0.25 \times 0.25 = 0.0156 => 1$ \div smallest to get whole number ratio



Infrared absorption data

O-H (acid) 2500- 3000 cm⁻¹

Bond	Wavenumber /cm ⁻¹
N-H (amines)	3300-3500
O-II (alcohols)	3230-3550
C - H	2850-3300
O-H (acids)	2500-3000
$C \equiv N$	2220-2260
C = O	1680 -1750
C = C	1620-1680
C - O	1000-1300
C - C	750-1100


Use spectra to identify particular functional groups and to identify impurities, limited to data presented in wavenumber form

Absorption or trough in between 1680-1750 cm⁻¹ range indicates presence of C=O bond

Always quote the wave number range from the data sheet

7

The absorption of infra-red radiation by bonds in this type of spectroscopy is the same absorption that bonds in CO_2 , methane and water vapour in the atmosphere do - that causes the green house effect.

Mechanism of greenhouse effect

UV wavelength radiation passes through the atmosphere to the Earth's surface and heats up Earth's surface. The Earth radiates out infrared long wavelength radiation.

The C=O Bonds in CO_2 absorb infrared radiation so the IR radiation does not escape from the atmosphere. This energy is transferred to other molecules in the atmosphere by collisions so the atmosphere is warmed.

Identification of functional groups by test-tube reactions

Functional group	Reagent	Result
Alkene	Bromine water	Orange colour decolourises
Aldehyde	Fehling's solution	Blue solution to red precipitate
Aldehyde	Tollens' reagent	Silver mirror formed
Carboxylic acid	Sodium carbonate	Effervescence of CO ₂ evolved
1° 2° alcohol and aldehyde	Sodium dichromate and sulfuric acid	Orange to green colour change
chloroalkane	Warm with silver nitrate	Slow formation of white precipitate of AgCl

Tollens' Reagent

Reagent: Tollens' Reagent formed by mixing aqueous ammonia and silver nitrate. The active substance is the complex ion of $[Ag(NH_3)_2]^+$.

Conditions: heat gently

- Reaction: aldehydes only are oxidised by Tollens' reagent into a carboxylic acid. The silver(I) ions are reduced to silver atoms
- **Observation:** with aldehydes, a silver mirror forms coating the inside of the test tube. Ketones result in no change.

```
CH_{3}CHO + 2Ag^{+} + H_{2}O \rightarrow CH_{3}COOH + 2Ag + 2H^{+}
```

Fehling's solution

 Reagent: Fehling's Solution containing blue Cu ²⁺ ions.
Conditions: heat gently
Reaction: aldehydes only are oxidised by Fehling's Solution into a carboxylic acid. The copper (II) ions are reduced to copper(I) oxide .
Observation: Aldehydes :Blue Cu ²⁺ ions in solution change to a red precipitate of Cu₂O. Ketones do not react

CH₃CHO + 2Cu²⁺ + 2H₂O → CH₃COOH + Cu₂O + 4H⁺

The presence of a carboxylic acid can be tested by addition of **sodium carbonate**. It will fizz and produce carbon dioxide $2CH_3CO_2H + Na_2CO_3 \rightarrow 2CH_3CO_2 \cdot Na^+ + H_2O + CO_2$