1.12 Acid Base Equilibria

Bronsted-Lowry Definition of acid Base behaviour
A Bronsted-Lowry acid is defined as a substance that can donate a proton.
A Bronsted-Lowry base is defined as a substance that can accept a proton.

$$
\mathrm{HCl}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}
$$

Each acid is linked to a conjugate base on
acid base acid base the other side of the equation.

Calculating pH

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

Where $\left[\mathrm{H}^{+}\right]$is the concentration of hydrogen ions in the solution.

Calculating pH of strong acids

```
Strong acids completely dissociate
```

The concentration of hydrogen ions in a monoprotic strong acid will be the same as the concentration of the acid.

For HCl and HNO_{3} the $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ will be the same as the original concentration of the acid.

For $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ the pH will be $-\log [0.1]=1.00$

Finding $\left[\mathrm{H}^{+}\right]$from pH

$\left[\mathrm{H}^{+}\right]=1 \times 10-\mathrm{pH}$

On most calculators this is done by pressing
$\operatorname{lnv}\left(\right.$ or $2^{\text {nd }}$ function) \rightarrow log \rightarrow - number (pH)

Always give pH values to 2d.p. in the exam

Example 1

Calculate the concentration of HCl with a pH of 1.35
$\left[\mathrm{H}^{+}\right]=1 \times 10^{-1.35}=0.045 \mathrm{~mol} \mathrm{dm}^{-3}$

Ionic product for water

In all aqueous solutions and pure
This equilibrium has the following

Rearrange to

Learn this expression

Because $\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right.$] is much bigger than the concentrations of the ions, we assume its value is constant and make a new constant Kw

At $25^{\circ} \mathrm{C}$ the value of K_{w} for all aqueous solutions is $1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$

Finding pH of pure water

The K_{w} expression can be used to calculate $\left[\mathrm{H}^{+(a q)}\right]$ ions if we know the $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ ions and vice versa.

Pure water/ neutral solutions are neutral because the $\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]$
Using $K_{\mathrm{w}}=\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]$ then when neutral $K_{\mathrm{w}}=\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]^{2}$
and $\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\sqrt{ } K_{\mathrm{w}}$
At $25^{\circ} \mathrm{C}\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\sqrt{ } 1 \times 10^{-14}=1 \times 10^{-7}$ so $\mathrm{pH}=7$

Example 2 : Calculate the pH of water at $50^{\circ} \mathrm{C}$ given that $K_{\mathrm{w}}=$ $5.476 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at $50^{\circ} \mathrm{C}$
$\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\sqrt{ } K_{\mathrm{w}}=\sqrt{ } 5.476 \times 10^{-14}=2.34 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{pH}=-\log 2.34 \times 10^{-7}=6.6$
It is still neutral though as $\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\left[\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right]$

At different temperatures to $25^{\circ} \mathrm{C}$ the pH of pure water changes. Le Chatelier's principle can predict the change. The dissociation of water is endothermic so increasing the temperature would push the equilibrium to the right giving a bigger concentration of H^{+} ions and a lower pH .

For bases we are normally given the concentration of the hydroxide ion.
To work out the pH we need to work out $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ using the K_{w} expression.

Strong bases completely dissociate into their ions. $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

Weak Acids

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}^{-}(\mathrm{aq}) \quad \xrightarrow{\text { This simplifies to }} \mathrm{HA}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+} \underset{(\mathrm{aq})}{ }+\mathrm{A}^{-}{ }_{(\mathrm{aq})}
$$

Example 3:

Calculate the pH of the strong base $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ Assume complete dissociation.
$K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-(a q)}\right]=1 \times 10^{-14}$
$\left[\mathrm{H}^{+}(\mathrm{aq})\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-(a q)}\right]=1 \times 10^{-14} / 0.1=1 \times 10^{-13} \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{pH}=-\log \left[1 \times 10^{-13}\right]=\mathbf{1 3 . 0 0}$

Weak acids only slightly dissociate when dissolved in water, giving an equilibrium mixture.

Weak acids dissociation expression

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{A}_{(\mathrm{aq})}\right]}{[\mathrm{HA}(\mathrm{aq})]}
$$

The K_{a} for ethanoic acid is $1.7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$. The larger K_{a} the stronger the acid.

Calculating pH of a Weak Acid

Example 4 Write an equation for dissociation of propanoic acid and its K_{a} expression

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-} \text {(aq) } \\
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}{ }_{(\mathrm{aq})}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}\right]}
\end{aligned}
$$

$\mathrm{p} K_{\mathrm{a}}$

Sometimes K_{a} values are quoted as $\mathrm{p} K_{\mathrm{a}}$ values
$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}$ so $K_{\mathrm{a}}=10^{-\mathrm{p}} \mathrm{Ka}_{\mathrm{a}}$

To make the calculation easier two assumptions are made to simplify the K_{a} expression:

1) $\left[\mathrm{H}^{+}{ }_{(\text {aq) })}\right]_{\text {eqm }}=\left[\mathrm{A}^{-}{ }_{(\text {aq })}\right]$ eqm because they have dissociated according to a $1: 1$ ratio.
2) As the amount of dissociation is small, assume that the initial concentration of the undissociated acid has remained constant.
So $\left[H A_{(a q)}\right]_{\text {eqm }}=\left[\mathrm{HA}_{(\text {aq) }}\right]_{\text {initial }}$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{A}^{-}{ }_{(\mathrm{aq})}\right]}{[\mathrm{HA}(\mathrm{aq})]}
$$

Simplifies to \downarrow

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]^{2}}{\left[\mathrm{HA}_{(\mathrm{aq})}\right]_{\text {initial }}}
$$

Example 5 Calculate the pH of a solution of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid (K_{a} is $1.7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$)

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}{ }_{(\mathrm{aq})} \\
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}{ }_{(\mathrm{aqq})}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}\right]} \rightarrow K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}\right]_{\text {nitial }}} \rightarrow 1.7 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]^{2}}{0.01} \\
& {\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]^{2}=1.7 \times 10^{-5} \times 0.01} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(4.12 \times 10^{-4}\right) \\
& {\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\sqrt{ } 1.7 \times 10^{-7}=4.12 \times 10^{-4}} \\
& \mathrm{pH}=3.38
\end{aligned}
$$

Example 6 Calculate the concentration of propanoic acid with a pH of $3.52\left(K_{\mathrm{a}}\right.$ is $\left.1.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}{ }_{(\mathrm{aq})}$

$$
\left[\mathrm{H}^{+}\right]=1 \times 10^{-3.52}=0.000302 \mathrm{M}
$$

$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}\right]=9.12 \times 10^{-8} / 1.35 \times 10^{-5} \quad\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}\right]=6.75 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

pH calculations involving neutralisation reactions

These can be quite complex calculations working out the pH of a partially neutralised acid or the pH of the solution if too much alkali has been added and has gone past neutralisation. The method differs if the acid is strong or weak for the partially neutralised case.

Strong Acid and Strong Base Neutralisations

Work out moles of original acid and hence moles H^{+}
Work out moles of base added and hence moles OH^{-} Work out which one is in excess

Work out new concentration of excess H^{+}ions $\left[\mathrm{H}^{+}\right]=\frac{\text { moles excess } \mathrm{H}^{+}}{\text {total volume }\left(\mathrm{dm}^{3}\right)}$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \nwarrow \begin{aligned}
& \text { Total volume }= \\
& \text { vol of acid }+ \text { vol } \\
& \text { of base added }
\end{aligned}
$$

Work out new concentration of excess OH^{-}ions
$\left[\mathrm{OH}^{-}\right]=$moles excess OH^{-} total volume $\left(\mathrm{dm}^{3}\right)$
$\left[\mathrm{H}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
\ Total volume = vol of acid + vol of base added

Example $845 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ is reacted with $30 \mathrm{~cm}^{3}$ of $0.65 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$. Calculate the pH of the resulting mixture.
Moles $\mathrm{HCl}=\mathrm{mol} \mathrm{H}^{+}=$conc $\times \mathrm{vol}=1 \times 0.045=0.045 \mathrm{~mol}$
Moles $\mathrm{NaOH}=\mathrm{mol} \mathrm{OH}^{-}=$conc \timesvol $=0.65 \times 0.030=0.0195$ $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
Moles of H^{+}in excess $=0.045-0.0195=0.0255$
$\left[\mathrm{H}^{+}\right]=\frac{\text { moles excess } \mathrm{H}^{+}}{\text {total volume }\left(\mathrm{dm}^{3}\right)}$
$=0.0255 / 0.075=0.34 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log 0.34$
$=0.47$
Example $715 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ is reacted with $35 \mathrm{~cm}^{3}$ of $0.55 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$. Calculate the pH of the resulting mixture.

Moles $\mathrm{HCl}=\mathrm{mol} \mathrm{H}^{+}=$conc $\times \mathrm{vol}=0.5 \times 0.015=0.0075 \mathrm{~mol}$ Moles $\mathrm{NaOH}=\mathrm{mol} \mathrm{OH}^{-}=$conc $\times \mathrm{vol}=0.55 \times 0.035=0.01925$ $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
Moles of OH^{-}in excess $=0.01925-0.0075=0.01175$
$\left[\mathrm{OH}^{-}\right]=$moles excess OH^{-}
total volume (dm^{3})
$=0.01175 / 0.05=0.235 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}^{+}\right]=K_{w} /\left[\mathrm{OH}^{-}\right]$
$=1 \times 10^{-14} / 0.235=4.25 \times 10^{-14}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log 4.25 \times 10^{-14}$
$=13.37$

Strong diprotic acids and bases

Questions of the type in Example 7 and 8 may include strong diprotic acids such as $\mathrm{H}_{2} \mathrm{SO}_{4}$ or bases such as $\mathrm{Ba}(\mathrm{OH})_{2}$.

Example $935 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{H}_{2} \mathbf{S O}_{4}$ is reacted with $30 \mathrm{~cm}^{3}$ of $0.55 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$. Calculate the pH of the resulting mixture.

Moles $\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}=$ conc \times vol $=0.5 \times 0.035=0.0175 \mathrm{~mol}$
Moles $\mathrm{H}^{+}=0.0175 \mathbf{x 2}=\mathbf{0 . 0 3 5}$
Moles $\mathrm{NaOH}=\mathrm{mol} \mathrm{OH}^{-}=$conc \timesvol $=0.55 \times 0.030=0.0165$
$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
Moles of H^{+}in excess $=0.035-0.0165=0.0185$
$\left[\mathrm{H}^{+}\right]=$moles excess H^{+}
total volume (dm^{3})
$=0.0185 / 0.065=0.28 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log 0.28 \\
& =0.55
\end{aligned}
$$

Example $1015 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ is reacted with $35 \mathrm{~cm}^{3}$ of $0.45 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Ba}(\mathrm{OH})_{2}$. Calculate the pH of the resulting mixture.
Moles $\mathrm{HCl}=\mathrm{mol} \mathrm{H}^{+}=$conc $\times \mathrm{vol}=0.5 \times 0.015=0.0075 \mathrm{~mol}$
Moles $\mathbf{B a}(\mathbf{O H})_{2}=$ conc \times vol $=0.45 \times 0.035=0.01575$
Moles $\mathrm{OH}^{-}=0.01575 \mathbf{x 2}=0.0315$
$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
Moles of OH^{-}in excess $=0.0315-0.0075=0.024$
$\left[\mathrm{OH}^{-}\right]=$moles excess OH^{-}
total volume $\left(\mathrm{dm}^{3}\right)$
$=0.024 / 0.05=0.48 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]$
$=1 \times 10^{-14} / 0.48=2.08 \times 10^{-14}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log 2.08 \times 10^{-14}$
$=13.68$

Weak Acid and Strong Base Neutralisations

Work out moles of original acid Work out moles of base added Work out which one is in excess

If excess

acid

If excess alkali use the same method with excess alkali and strong acid above

Work out new concentration of excess HA

$$
[\mathrm{HA}]=\frac{\text { initial moles } \mathrm{HA}-\text { moles }^{\mathrm{OH}}}{}{ }^{-}
$$

Work out concentration of salt formed $\left[\mathrm{A}^{-}\right]$
$\left[\mathrm{A}^{-}\right]=$moles OH^{-}added
total volume $\left(\mathrm{dm}^{3}\right)$
Rearrange $K_{\mathrm{a}}=\underline{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}$to get $\left[\mathrm{H}^{+}\right]$
[HA]
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

Example $1155 \mathrm{~cm}^{3}$ of $0.50 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is reacted with $25 \mathrm{~cm}^{3}$ of $0.35 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$. Calculate the pH of the resulting mixture.

Moles $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=$ conc \times vol $=0.5 \times 0.055=0.0275 \mathrm{~mol}$
Moles $\mathrm{NaOH}=$ conc \times vol $=0.35 \times 0.025=0.00875$

Moles of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ in excess $=0.0275-0.00875=0.01875$ (as $1: 1$ ratio)

Working out pH of a weak acid at half equivalence

When a weak acid has been reacted with exactly half the neutralisation volume of alkali, the above calculation can be simplified considerably.

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-} \mathrm{H}\right]}
$$

At half neutralisation we can make the assumption that $[\mathrm{HA}]=[\mathrm{A}-]$

So $\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=K_{\mathrm{a}}$

$$
\text { And } \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}
$$

Example 12

Calculate the pH of the resulting solution when $25 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ is added to $50 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}\left(K_{\mathrm{a}}=1.7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right.$)
From the volumes and concentrations spot it is half neutralisation (or calculate)
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}=-\log \left(1.7 \times 10^{-5}\right)=4.77$

Diluting an acid or alkali
pH of diluted strong acid
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}^{+}\right]_{\text {old }} \times$ old volume new volume
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
pH of diluted base
$\left[\mathrm{OH}^{-}\right]=\left[\mathrm{OH}^{-}\right]_{\text {old }} \times$ old volume new volume
$\left[\mathrm{H}^{+}\right]=\underline{K}_{\mathrm{w}}$
[OH^{-}]
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

Example 13 Calculate the new pH when $50.0 \mathrm{~cm}^{3}$ of $0.150 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ is mixed with $500 \mathrm{~cm}^{3}$ of water.
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}^{+}\right]_{\text {old }} \times \underset{\text { new volume }}{\text { old volume }}$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=0.150 \times \frac{0.05}{0.55}
$$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}{ }_{\text {aq) }}\right]=0.0136} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
=-\log 0.0136
\end{gathered}
$$

$$
=1.87
$$

$$
\begin{aligned}
& {\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=\frac{\text { moles excess } \mathrm{CH}_{3} \mathrm{CO}_{2}}{\text { total volume }\left(\mathrm{dm}^{3}\right)} \underline{\underline{H}} \quad\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]=\frac{\text { moles OH}}{\text { total volume }\left(\mathrm{dm}^{3}\right)}} \\
& =0.01875 / 0.08=0.234 \mathrm{M} \quad=0.00875 / 0.08=0.109 \mathrm{M} \\
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-} \mathrm{H}\right]} \\
& {\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right] /\left[\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}\right]} \\
& =1.7 \times 10^{-5} \times 0.234 / 0.109 \\
& =3.64 \times 10^{-5} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& =-\log 3.64 \times 10^{-5} \\
& =4.44
\end{aligned}
$$

Buffer Solutions

A buffer solution is one where the pH does not change significantly if small amounts of acid or alkali are added to it.

An acidic buffer solution is made from a weak acid and a salt of that weak acid (made from reacting the weak acid with a strong base).

Example : ethanoic acid and sodium ethanoate
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\text {aq })}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \mathrm{Na}^{+}$

A basic buffer solution is made from a weak base and a salt of that weak base (made from reacting the weak base with a strong acid).
Example :ammonia and ammonium chloride NH_{3} and $\mathrm{NH}_{4}{ }^{+} \mathrm{Cl}^{-}$

How buffer solutions work

| In an ethanoic acid buffer
 $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}$
 Acid $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}{ }_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})}$ |
| :--- | :--- |
| conjugate base |

In a buffer solution there is a much higher concentration of the salt $\mathrm{CH}_{3} \mathrm{CO}_{2}$ - ion than in the pure acid.

The buffer contains a reservoir of HA and A - ions

If small amounts of acid is added to the buffer: Then the above equilibrium will shift to the left removing nearly all the H^{+}ions added,
$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}{ }_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=K_{\mathrm{a}} \frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}{ }_{(\mathrm{aq})}\right]}
$$

As there is a large concentration of the salt ion in the buffer, the ratio $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right] /\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]$stays almost constant, so the pH stays fairly constant.

If small amounts of alkali is added to the buffer. The OH^{-}ions will react with H^{+}ions to form water.
$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
The equilibrium will then shift to the right to produce more H^{+}ions.
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}{ }_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})}$

Learn these explanations carefully and be able to write the equilibrium to illustrate your answer.

Some ethanoic acid molecules are changed to ethanoate ions but as there is a large concentration of the salt ion in the buffer, the ratio $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right] /\left[\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}\right]$stays almost constant, so the pH stays fairly constant.

Calculating the pH of Buffer Solutions

We still use the weak acids dissociation expression

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{A}^{-}{ }_{(\mathrm{aq})}\right]}{[\mathrm{HA}(\mathrm{aq})]}
$$

But here we assume the [$\left.\mathrm{A}^{-}\right]$ concentration is due to the added salt only

Normally we $\xrightarrow{\text { rearrange to }}$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=K_{\mathrm{a}} \frac{\left[\mathrm{HA}_{(\mathrm{aq})}\right]}{\left[\mathrm{A}^{-}{ }_{(\mathrm{aq})}\right]}
$$

We also assume the initial concentration of the acid has remained constant, because the amount that has dissociated or reacted is small.

The salt content can be added in several ways: a salt solution could be added to the acid or some solid salt added. A buffer can also be made by partially neutralising a weak acid with alkali and therefore producing salt.

We can enter moles of acid and salt straight into the equation as they both have the same new final volume

Calculate the moles of both solutions
Moles ethanoic $=$ conc \times vol $=0.1 \times 0.045=0.0045 \mathrm{~mol}$
Moles sodium ethanoate $=$ conc $\times \mathrm{vol}=0.15 \times 0.050=0.0075 \mathrm{~mol}$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=1.7 \times 10^{-5} \times \frac{0.0045}{0.0075} \rightarrow\left[\mathrm{H}^{+}(\mathrm{aq})\right]=1.02 \times 10^{-5}
$$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log 1.02 \times 10^{-5} \\
& =4.99
\end{aligned}
$$

Example 14: making a buffer by adding a salt solution
Calculate the pH of a buffer made from $45 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid and
$50 \mathrm{~cm}^{3}$ of $0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium ethanoate ($K_{\mathrm{a}}=1.7 \times 10^{-5}$)

Example 15 : making a buffer by adding a solid salt
A buffer solution is made by adding 1.1 g of sodium ethanoate into $100 \mathrm{~cm}^{3}$ of $0.40 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid. Calculate its $\mathrm{pH} . \quad\left(K_{\mathrm{a}}=1.7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$

We can enter moles of acid and salt straight into the equation as they both have the
Calculate the moles of both solutions
Moles ethanoic $=$ conc \times vol $=0.4 \times 0.1=0.04 \mathrm{~mol}$
Moles sodium ethanoate $=$ mass $/ M r=1.1 / 82=0.0134 \mathrm{~mol}$
 same new final volume

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=1.7 \times 10^{-5} \times \frac{0.04}{0.0134} \rightarrow\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=5.07 \times 10^{-5}
$$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log 5.07 \times 10^{-5}
\end{aligned}
$$

$$
=4.29
$$

If a buffer is made by adding sodium hydroxide to partially neutralise a weak acid then follow the method below

Example $1655 \mathrm{~cm}^{3}$ of $0.50 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is reacted with $25 \mathrm{~cm}^{3}$ of $0.35 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$. Calculate the pH of the resulting buffer solution.

Moles $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=$ conc \times vol $=0.5 \times 0.055=0.0275 \mathrm{~mol}$
Moles $\mathrm{NaOH}=$ conc $\times \mathrm{vol}=0.35 \times 0.025=0.00875 \mathrm{~mol}$

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \\
K_{\mathrm{a}} \text { is } 1.7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}
\end{gathered}
$$

Moles of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ in excess $=0.0275-0.00875=0.01875$ (as 1:1 ratio)

$$
\begin{aligned}
& {\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=\frac{\text { moles excess } \mathrm{CH}_{3} \mathrm{CO}_{2}}{\text { total volume }\left(\mathrm{dm}^{3}\right)} \quad\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]=\frac{\text { moles OH}}{}{ }^{-} \text {added }} \\
& =0.01875 / 0.08=0.234 \mathrm{~mol} \mathrm{dm}^{-3} \\
& =0.00875 / 0.08=0.109 \mathrm{~mol} \mathrm{dm}^{-3} \\
& \mathrm{ka}=\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right] \\
& {\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right. \text {] }} \\
& {\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right] /\left[\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}\right]} \\
& =1.7 \times 10^{-5} \times 0.234 / 0.109 \\
& =3.64 \times 10^{-5} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& =-\log 3.64 \times 10^{-5} \\
& =4.44
\end{aligned}
$$

Calculating change in pH of buffer on addition of small amount of acid or alkali

If a small amount of alkali is added to a buffer then the moles of the buffer acid would reduce by the number of moles of alkali added and the moles of salt would increase by the same amount so a new calculation of pH can be done with the new values.

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}+\mathrm{OH}^{-} \rightarrow \quad \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

If a small amount of acid is added to a buffer then the moles of the buffer salt would reduce by the number of moles of acid added and the moles of buffer acid would increase by the same amount so a new calculation of pH can be done with the new values.

$$
\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}
$$

Example 17: 0.005 mol of NaOH is added to $500 \mathrm{~cm}^{3}$ of a buffer where the concentration of ethanoic acid is $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ and the concentration of sodium ethanoate is $0.250 \mathrm{~mol} \mathrm{dm}^{-3} .\left(K_{\mathrm{a}}=1.7 \times 10^{-5}\right)$

Calculate the pH of the buffer solution after the NaOH has been added.
Work out the moles of acid and salt in the initial buffer solution
Moles ethanoic acid $=$ conc \times vol $=0.200 \times 0.500=0.100 \mathrm{~mol}$
Moles sodium ethanoate $=$ conc \times vol $=0.25 \times 0.500=0.125 \mathrm{~mol}$
Work out the moles of acid and salt in buffer after the addition of $0.005 \mathrm{~mol} \mathbf{N a O H}$
Moles ethanoic acid $=0.100-0.005=0.095 \mathrm{~mol}$
Moles sodium ethanoate $=0.125+0.005=0.130 \mathrm{~mol}$
We can enter moles of acid

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq)}}\right]=K_{\mathrm{a}} \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}\right]} \longleftarrow \quad \begin{aligned}
& \text { and salt straight into the } \\
& \text { equation as they both have } \\
& \text { the same new final volume }
\end{aligned}
$$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=1.7 \times 10^{-5} \times \frac{0.095}{0.130} \rightarrow\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=1.24 \times 10^{-5}
$$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log 1.24 \times 10^{-5} \\
& =4.91
\end{aligned}
$$

Diluting a buffer solution

Diluting a buffer solution with water will not change its pH
This is because in buffer equation below the ratio of $[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$will stay constant as both concentrations of salt and acid would be diluted by the same proportion.

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=K_{\mathrm{a}} \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}
$$

Titration curves

Constructing a pH curve

1. Transfer $25 \mathrm{~cm}^{3}$ of acid to a conical flask with a volumetric pipette
2. Measure initial pH of the acid with a pH meter
3. Add alkali in small amounts $\left(2 \mathrm{~cm}^{3}\right)$ noting the volume added
4. Stir mixture to equalise the pH
5. Measure and record the pH to 1 d.p.
6. Repeat steps $3-5$ but when approaching endpoint add in smaller volumes of alkali
7. Add until alkali in excess

Calibrate meter first by measuring known pH of a buffer solution. This is necessary because pH meters can lose accuracy on storage.
Most pH probes are calibrated by putting probe in a set buffer (often pH 4) and pressing a calibration button/setting for that pH . Sometimes this is repeated with a second buffer at a different pH

Can also improve accuracy by maintaining constant temperature

Strong acid - Strong base e.g. HCl and NaOH

General shape (pH at neutralisation)

Half neutralisation volume

For weak acids

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{A}^{-}{ }_{(\mathrm{aq})}\right]}{[\mathrm{HA}(\mathrm{aq})]}
$$

At $1 / 2$ the neutralisation volume the $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$

$$
\text { So } K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right] \text {and } \mathrm{p} K_{\mathrm{a}}=\mathrm{pH}
$$

If we know the K_{a} we can then work out the pH at $1 / 2 \mathrm{~V}$ or vice versa.

If a pH curve is plotted then the pH of a weak acid at half neutralisation ($1 / 2 \mathrm{~V}$) will equal the $\mathrm{p} K_{\mathrm{a}}$

Strong acid - Weak base

e.g. HCl and NH_{3}

Choosing an Indicator

Indicators can be considered as weak acids. The acid must have a different colour to its conjugate base

An indicator changes colour from HIn to In^{-}over a narrow range. Different indicators change colours over different ranges.

The end-point of a titration is defined as the point when the colour of the indicator changes colour
The end-point of a titration is reached when $[\mathrm{HIn}]=$ [ln n]. To choose a correct indicator for a titration one should pick an indicator whose end-point coincides with the equivalence point for the titration.

Weak acid - Weak base
e.g. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and NH_{3}

No Steep part of the curve

How indicators work

We can apply Le Chatelier to give us the colour.

In an acid solution the H^{+}ions present will push this equilibrium towards the reactants. Therefore colour A is the acidic colour.

In an alkaline solution the OH^{-}ions will react and remove H^{+}ions causing the equilibrium to shift to the products. Colour B is the alkaline colour.

An indicator will work if the pH range of the indicator lies on the steep part of the titration curve. In this case the indicator will change colour rapidly and the colour change will correspond to the neutralisation point.

Only use phenolphthalein in titrations with strong bases but not weak bases-

Colour change: colourless acid \rightarrow pink alkali

Use methyl orange with titrations with strong acids but not weak acids Colour change: red acid \rightarrow yellow alkali (orange end point)

