2.5 Transition Metals

General properties of transition metals

Transition metal characteristics of elements $Sc \rightarrow Cu$ arise from an **incomplete d sub-level** in atoms or ions.

These characteristics include: •complex formation, •formation of coloured ions, •variable oxidation state •catalytic activity.

Why is zinc not a transition metal?

Zinc can only form a +2 ion. In this ion the Zn^{2+} has a **complete** d orbital and so does not meet the criteria of having an incomplete d orbital in one of its compounds.

Complex formation

complex: is a central metal ion surrounded by ligands.

ligand: an atom, ion or molecule which can donate a lone electron pair.

Co-ordinate bonding is involved in complex formation. Co-ordinate bonding is when **the shared pair of electrons** in the covalent bond come from **only one of the bonding atoms**. **Co-ordination number**: the number of co-ordinate bonds formed to a central

metal ion.

Ligands can be **monodentate** (e.g. H_2O , NH_3 and Cl^-) which can form one coordinate bond per ligand or **bidentate** (e.g. $NH_2CH_2CH_2NH_2$ and ethanedioate ion $C_2O_4^{-2-}$) which have two atoms with lone pairs and can form two coordinate bonds per ligand, or **multidentate** (e.g. EDTA⁴⁻ which can form six coordinate bonds per ligand).

Substitution reactions

 H_2O , NH_3 and Cl^- can act as monodentate ligands.

The ligands NH_3 and H_2O are similar in size and are uncharged.

Exchange of the ligands NH_3 and H_2O occurs without change of co-ordination number (e.g. Co^{2+} and Cu^{2+}).

$$[Co(H_2O)_6]^{2+}_{(aq)} + 6NH_{3 (aq)} \rightarrow [Co(NH_3)_6]^{2+}_{(aq)} + 6H_2O_{(l)}$$

This substitution may, however, be incomplete as in the case with copper.

Cu becomes $[Cu(NH_3)_4(H_2O)_2]^{2+}$ deep blue solution

$$[\mathrm{Cu}(\mathrm{H_2O})_6]^{2+}{}_{(\mathrm{aq})} + 4\mathrm{NH_3}{}_{(\mathrm{aq})} \rightarrow [\mathrm{Cu}(\mathrm{NH_3})_4(\mathrm{H_2O})_2]^{2+}{}_{(\mathrm{aq})} + 4\mathrm{H_2O}{}_{(\mathrm{I})}$$

Reactions with chloride ions

Addition of a high concentration of chloride ions (from conc HCl or saturated NaCl) to an aqueous ion leads to a **ligand substitution** reaction.

The Cl⁻ ligand is larger than the uncharged H_2O and NH_3 ligands so therefore ligand exchange can involve a change of co-ordination number.

Be careful: If solid copper chloride (or any other metal) is **dissolved in water** it forms the **aqueous** $[Cu(H_2O)_6]^{2+}$ complex and **not** the chloride $[CuCl_4]^{2-}$ complex.

Sc 1s²2s²2p⁶3s²3p⁶ 4s²3d¹ Ti 1s²2s²2p⁶3s²3p⁶ 4s²3d² V 1s²2s²2p⁶3s²3p⁶ 4s²3d³ Cr 1s²2s²2p⁶3s²3p⁶ 4s¹3d⁵ Mn 1s²2s²2p⁶3s²3p⁶ 4s²3d⁵ Fe 1s²2s²2p⁶3s²3p⁶ 4s²3d⁶ Co 1s²2s²2p⁶3s²3p⁶ 4s²3d⁷ Ni 1s²2s²2p⁶3s²3p⁶ 4s²3d⁸ Cu 1s²2s²2p⁶3s²3p⁶ 4s²3d⁸ Cu 1s²2s²2p⁶3s²3p⁶ 4s²3d¹⁰ Zn 1s²2s²2p⁶3s²3p⁶ 4s²3d¹⁰

When

forming

ions lose

4s before

3d

Sc ³⁺ [Ar] 4s⁰3d⁰ Ti ³⁺ [Ar] 4s⁰3d¹ V ³⁺ [Ar] 4s⁰3d² Cr ³⁺ [Ar] 4s⁰3d³ Mn ²⁺ [Ar] 4s⁰3d⁵ Fe ³⁺ [Ar] 4s⁰3d⁵ Co ²⁺ [Ar] 4s⁰3d⁷ Ni ²⁺ [Ar] 4s⁰3d⁸ Cu ²⁺ [Ar] 4s⁰3d⁹ **Zn ²⁺ [Ar] 4s⁰3d¹⁰**

 $\begin{bmatrix} OH_2 \\ H_2O \\ H_2O \\ H_2O \\ OH_2 \end{bmatrix}^{2+}$

Addition of conc HCl to aqueous ions of Cu
and Co leads to a change in coordination
number from 6 to 4.
$$[CuCl_4]^{2^-}$$
 yellow/green solutionThese are
tetrahedral in
shape

$$\begin{split} & [{\rm Cu}({\rm H}_2{\rm O})_6]^{2+} + 4{\rm Cl}^- \rightarrow [{\rm Cu}{\rm Cl}_4]^{2-} + 6{\rm H}_2{\rm O} \\ & [{\rm Co}({\rm H}_2{\rm O})_6]^{2+} + 4{\rm Cl}^- \rightarrow [{\rm Co}{\rm Cl}_4]^{2-} + 6{\rm H}_2{\rm O} \\ & [{\rm Fe}({\rm H}_2{\rm O})_6]^{3+} + 4{\rm Cl}^- \rightarrow [{\rm Fe}{\rm Cl}_4]^{-} + 6{\rm H}_2{\rm O} \end{split}$$

Bidentate ligands

Multidentate ligands

Ligands can be **multidentate** (e.g. EDTA⁴⁻ which can form six coordinate bonds per ligand).

Learn the two bidentate ligands mentioned above but it is not necessary to remember the structure of EDTA.

Haem is an iron(II) complex with a multidentate ligand.

Oxygen forms a co-ordinate bond to Fe(II) in haemoglobin, enabling oxygen to be transported in the blood.

CO is toxic to humans because CO can form a strong coordinate bond with haemoglobin. This is a stronger bond than that made with oxygen and so it replaces the oxygen, attaching to the haemoglobin.

Stability of complexes

The substitution of monodentate ligand with a bidentate or a multidentate ligand leads to a more stable complex. This is called the chelate effect.

This chelate effect can be explained in terms of a positive entropy change in these reactions as there are more molecules of products than reactants.

$[Cu(H_2O)_6]^{2+}_{(aq)} + EDTA^{4-}_{(aq)} \rightarrow [Cu(EDTA)]^{2-}_{(aq)} + 6H_2O_{(I)}$

The copper complex ion has changed from having unidentate ligands to a multidentate ligand. In this reaction there is **an increase** in the **entropy** because there are **more moles of products** than reactants (from 2 to 7), creating more disorder.

The enthalpy change is small as there are similar numbers of bonds in both complexes.

Free energy G will be negative as S is positive and H is small.

The stability of the EDTA complexes has many applications. It can be added to rivers to remove poisonous heavy metal ions as the EDTA complexes are not toxic. It is in many shampoos to remove calcium ions present in hard water, so helping lathering.

 $[\text{Co}(\text{NH}_3)_6]^{2+} + 3\text{NH}_2\text{CH}_2\text{CH}_2\text{NH}_2 \rightarrow [\text{Co}(\text{NH}_2\text{CH}_2\text{CH}_2\text{NH}_2)_3]^{2+} + 6\text{NH}_3$

This reaction has an increase in entropy because of the increase in moles from 4 to 7 in the reaction. **S is positive.**

Its enthalpy change **H** is close to zero as **the number** of dative covalent and **type** (N to metal coordinate bond) **are the same** so the energy required to break and make bonds will be the same. Therefore **Free energy G** will be **negative** and the complex formed is stable.

EDTA titrations

The formation of the stable EDTA complex with metal ions can with the choice of suitable indicator be done in a quantitative titration.

 $[Cu(H_2O)_6]^{2+} + EDTA^{4-} \rightarrow [Cu(EDTA)]^{2-} + 6H_2O$ Always the same 1:1 ratio with any metal ion

A river was polluted with copper(II) ions. 25.0 cm ³ sample of the river water was titrated with a 0.0150 mol dm ⁻³ solution of EDTA ^{4–} , 6.45 cm ³ were required for complete reaction. Calculate the concentration, in mol dm ⁻³ , of copper(II) ions in the river water.	Step1 : find moles of EDTA ⁴⁻ moles = conc x vol = $0.0150 \times 6.45/1000$ = 9.68×10^{-5} mol Step 2 : using balanced equation find moles Cu ²⁺ 1:1 ratio = 9.68×10^{-5} mol Step 3 : find conc Cu ²⁺ in 25 cm ³ = $9.68 \times 10^{-5} / 0.025$ = 0.00387 moldm ⁻³	
--	--	--

Shapes of complex ions

Complexes can show two types of stereoisomerism: cis-trans isomerism and optical isomerism.

Cis-trans isomerism in square planar complexes

cis–trans isomerism is a special case of *E–Z* isomerism

Cis-trans isomerism in octahedral complexes

 $Cis-[Cr(H_2O)_4Cl_2]^+$

Optical isomerism in octahedral complexes

Complexes with 3 bidentate ligands can form two optical isomers (non-superimposable mirror images).

N Goalby chemrevise.org

Formation of coloured ions

Changing colour

Changing a ligand or changing the coordination number will **alter the energy split** between **the d- orbitals**, changing *E* and **hence change the frequency** of light absorbed.

Compounds without colour

Spectrophotometry

added to intensify the colour.

If visible light of increasing frequency is passed through a sample of a coloured complex ion, some of the light is	Absorption of visible light is used in spectrometry to determine the concentration of coloured ions.
absorbed. The amount of light absorbed is proportional to the concentration of the absorbing species (and to the distance travelled through the solution). Some complexes have only pale colours and do not absorb light strongly. In these cases a suitable ligand is	 method Add an appropriate ligand to <u>intensify</u> colour Make up solutions of known concentration Measure absorption or transmission Plot graph of absorption vs concentration

•Measure absorption of unknown and compare

Spectrometers contain a coloured filter. The colour of the filter is chosen to allow the wavelengths of light through that would be most strongly absorbed by the coloured solution.

Variable oxidation states		Nhen transition metals form ions they		
Transition elements show variable oxidation states.	I	ose the 4s electrons before the 3d.		
General trends •Relative stability of +2 state with respect to +3 state increat across the period •Compounds with high oxidation states tend to be oxidising e.g. MnO_4^- •Compounds with low oxidation states are often reducing a V^{2+} & Fe ²⁺	ases g agents agents e.g.	The redox potential for a transition metal ion changing from a higher to a lower oxidation state is influenced by pH and by the ligand.		
Vanadium				
Vanadium has four main oxidation states The ion or compound the compou		with the V at oxidation state +5 exists as a solid und in the form of a VO_3^- ion, usually as NH_4VO_3		
VO_2^+ Oxidation state +5 (a yellow solution) (am		ammonium vanadate (V). It is a reasonably strong		
VO ²⁺ Oxidation state + 4 (a blue solution)	the yellow	yellow solution containing the VO_2^+ ion.		
V ³⁺ Oxidation state + 3 (a green solution)				
V ²⁺ Oxidation state + 2 (a violet solution)				
Addition of zinc to the vanadium (V) in acidic solution will reduce the vanadium down through each successive oxid state, and the colour will successively change from yellow blue to green to violet.	Zinc metal with acid is a strong reducing agent that can reduce most transition metal ions from a higher oxidation state to the lowest state. E.g. Fe ³⁺ to Fe ²⁺			
[Ag(NH ₃) ₂] ⁺ is used in Tollens' reagent to distinguish be and ketones . Aldehydes reduce the silver in the Tollens Red ½ eq: [Ag(NH ₃) ₂] ⁺ + e ⁻ → Ag +2NH ₃ Ox ½ eq: CH ₃ CHO + H ₂ O → CH ₃ CO ₂ H + 2H ⁺ + 2e ⁻	etween alc s' reagent	lehydes to silver.		
Manganate Redox TitrationThe redox titration between Fe2+ with MnO_4^- (purple) is a very common exercise. This titration is self indicating because of the significant colour change from reactant to product. $MnO_4^-(aq) + 8H^+(aq) + 5Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O$ (I) + 5Fe3+ (aq) PurplePurple		The purple colour of manganate can make it difficult to see the bottom of meniscus in the burette.		
		If the manganate is in the burette then the end point of the titration will be the first permanent pink colour. Colourless → purple		
Choosing correct acid for manganate titrations. The acid is needed to supply the 8H ⁺ ions. Some acids are not hence make the titration readings inaccurate. Only use dilute sulfuric acid for manganate titrations. Insufficient volumes of sulfuric acid will mean the solution is not $MnO_4^-(aq) + 4H^+(aq) + 3e^- \rightarrow MnO_2(s) + 2H_2O$ The brown MnO_2 will mask the colour change and lead to a gratitration. Using a weak acid like ethanoic acid would have the same efferenced (8H ⁺).	suitable as t acidic enc eater (inacc ect as it can	they set up alternative redox reactions and rugh and MnO_2 will be produced instead of Mn^{2+} . curate) volume of manganate being used in the not supply the large amount of hydrogen ions		
It cannot be conc HCI as the Cl ⁻ ions would be oxidised to Cl ₂ $MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O(I)$ $Cl_2(aq) + 2e^{-} \rightarrow 2Cl^{-}(aq)$ This would lead to a greater volume of manganate being used a	by MnO₄ ⁻ a .51V I.36V and poison	s the E ^o MnO ₄ ⁻ /Mn ²⁺ > E ^o Cl ₂ /Cl ⁻ ous Cl ₂ being produced.		
It cannot be nitric acid as it is an oxidising agent. It oxidises Fe NO_3^- (aq) + $3H^+(aq) + 2e^- \rightarrow$ $Fe^{3+}(aq)+e^- \rightarrow Fe^{2+}(aq)$ $E^{\circ}=+0.77 V$	²⁺ to Fe ³⁺ a 94V	s Eº NO ₃ ⁻ /HNO ₂ > Eº Fe ³⁺ /Fe ²⁺		
This would lead to a smaller volume of manganate being used.				

Manganate titration example	Step1 : find moles of KMnO₄
A 2.41 g nail made from an alloy containing iron is dissolved in 100 cm ³ acid. The solution formed contains Fe(II) ions. 10cm ³ portions of this solution are titrated with potassium manganate (VII) solution of 0.02 mol dm ⁻³ . 9.80cm ³ of KMnO ₄ were needed to react with the solution containing the iron. Calculate the percentage of iron by mass in the nail. $MnO_{4^{-}(aq)} + 8H^{+}_{(aq)} + 5Fe^{2+} \rightarrow Mn^{2+}_{(aq)} + 4H_2O + 5Fe^{3+}$	moles = conc x vol $0.02 \times 9.8/1000$ $= 1.96x10^{-4} \text{ mol}$ Step 2 : using balanced equation find moles Fe ²⁺ in 10cm ³ $= \text{moles of KMnO_4 \times 5}$ $= 9.8x10^{-4} \text{ mol}$ Step 3 : find moles Fe ²⁺ in 100cm ³ $= 9.8x10^{-4} \text{ mol x 10}$ $= 9.8x10^{-3} \text{ mol}$ Step 4 : find mass of Fe in 9.8x10 ⁻³ mol mass= moles x Ar = 9.8x10 ⁻³ x 55.8 = 0.547g
	Step 5 : find % mass
	%mass = 0.547/2.41 x100
	= 22.6%
Other useful manganate titrations	

With hydrogen peroxide

 $\begin{array}{l} \text{Ox } \text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2\text{H}^+ + 2\text{e}^- \\ \text{Red } \text{MnO}_4^-(\text{aq}) + 8\text{H}^+(\text{aq}) + 5\text{e}^- \rightarrow \text{Mn}^{2+}(\text{aq}) + 4\text{H}_2\text{O} \\ \text{Overall } 2\text{MnO}_4^-(\text{aq}) + 6\text{H}^+(\text{aq}) + 5\text{H}_2\text{O}_2 \rightarrow 5\text{O}_2 + 2\text{Mn}^{2+}(\text{aq}) + 8\text{H}_2\text{O} \end{array}$

With ethanedioate

Ox $C_2O_4^{2^-}$ → $2CO_2 + 2e^-$ Red MnO₄⁻(aq) + 8H⁺(aq) + 5e⁻ → Mn²⁺ (aq) + 4H₂O Overall $2MnO_4^{-}(aq) + 16H^+(aq) + 5C_2O_4^{2^-}(aq) → 10CO_2(g) + 2Mn^{2+}(aq) + 8H_2O(I)$ The reaction between MnO_4^- and $C_2O_4^{2^-}$ is slow to begin with (as the reaction is between two negative ions). To do as a titration the conical flask can be heated to 60° C to speed up the initial reaction.

With iron (II) ethanedioate both the Fe²⁺ and the $C_2O_4^{2-}$ react with the MnO₄⁻ 1 MnO₄⁻ reacts with 5 Fe²⁺ and 2 MnO₄⁻ reacts with 5C₂O₄²⁻

 $\begin{array}{l} \mathsf{MnO}_4^{-}(\mathsf{aq}) + 8\mathsf{H}^+(\mathsf{aq}) + 5\mathsf{Fe}^{2+} \rightarrow \mathsf{Mn}^{2+}\left(\mathsf{aq}\right) + 4\mathsf{H}_2\mathsf{O} + 5\mathsf{Fe}^{3+} \\ 2\mathsf{MnO}_4^{-}(\mathsf{aq}) + 16\mathsf{H}^+(\mathsf{aq}) + 5\mathsf{C}_2\mathsf{O}_4^{2^-} \rightarrow 10\mathsf{CO}_2 + 2\mathsf{Mn}^{2+}\left(\mathsf{aq}\right) + 8\mathsf{H}_2\mathsf{O} \\ \mathsf{So overall} \\ 3\mathsf{MnO}_4^{-}(\mathsf{aq}) + 24\mathsf{H}^+(\mathsf{aq}) + 5\mathsf{Fe}\mathsf{C}_2\mathsf{O}_4 \rightarrow 10\mathsf{CO}_2 + 3\mathsf{Mn}^{2+}\left(\mathsf{aq}\right) + 5\mathsf{Fe}^{3+} + 12\mathsf{H}_2\mathsf{O} \end{array}$

So overall the ratio is **3** MnO_4^- to **5** FeC_2O_4

A 1.412 g sample of impure $FeC_2O_4.2H_2O_4$ was dissolved in an excess of dilute sulfuric acid and made up to 250 cm³ of solution. 25.0 cm³ of this solution decolourised 23.45 cm³ of a 0.0189 mol dm⁻³ solution of potassium manganate(VII). Calculate the percentage by mass of $FeC_2O_4.2H_2O$ in the original sample. Statistic Statistic

Step 1 : find moles of KMnO₄ moles = conc x vol $0.0189 \times 23.45/1000$ $= 4.43x10^{-4} \text{ mol}$ Step 2 : using balanced equation find moles FeC₂O₄.2H₂O in 25cm³ $= \text{moles of KMnO_4 x 5/3 (see above for ratio)}$ $= 7.39x10^{-4} \text{ mol}$ Step 3 : find moles FeC₂O₄.2H₂O in 250 cm³ $= 7.39x10^{-4} \text{ mol x 10}$ $= 7.39x10^{-3} \text{ mol}$ Step 4 : find mass of FeC₂O₄.2H₂O in 7.39x10^{-3} mol mass= moles x *M*r = 7.39x10^{-3} x 179.8 = 1.33g
Step 5 : find % mass % mass = 1.33/1.412 x100 = 94.1%

Catalysis

Catalysts increase reaction rates without getting used up. They do this by **providing an** alternative route with a lower activation energy.

Transition metals and their compounds can act as heterogeneous and homogeneous catalysts.

A heterogeneous catalyst is in a different phase from the reactants

A homogeneous catalyst is in the same phase as the reactants

Heterogeneous catalysis

Heterogeneous catalysts are usually solids whereas the reactants are gaseous or in solution. The reaction occurs at the surface of the catalyst.

Strength of adsorption

The strength of adsorption helps to determine the effectiveness of the catalytic activity.

Some metals e.g. **W** have **too strong** adsorption and so the products cannot be released.

Some metals e.g. **Ag** have **too weak** adsorption, and the reactants do not adsorb in high enough concentration.

Ni and Pt have about the right strength and are most useful as catalysts.

Surface area:

Increasing the surface area of a solid catalyst will improve its effectiveness. A support medium is often used to maximise the surface area and minimise the cost (e.g. Rh on a ceramic support in catalytic converters).

 V_2O_5 is used as a catalyst in the Contact process.

Examples of heterogeneous catalysts

Overall equation : $2SO_2 + O_2 \rightarrow 2SO_3$

step 1 SO₂ + V₂O₅ \rightarrow SO₃ + V₂O₄ step 2 2V₂O₄ + O₂ \rightarrow 2V₂O₅ Adsorption of reactants at active sites on the surface may lead to catalytic action. The active site is the place where the reactants adsorb on to the surface of the catalyst. This can result in the bonds within the reactant molecules becoming weaker, or the molecules being held in a more reactive configuration. There will also be a higher concentration of reactants at the solid surface, so leading to a higher collision frequency.

Transition metals can use the 3d and 4s $e^{\text{-}}$ of atoms on the metal surface to form weak bonds to the reactants.

Steps in heterogeneous catalysis

- 1. Reactants form bonds with atoms at **active sites** on the surface of the catalyst (adsorbed onto the surface)
- 2. As a result bonds in the reactants are weakened and break
- 3. New bonds form between the reactants held close together on catalyst surface.
- 4. This in turn weakens bonds between product and catalyst and product leaves (desorbs).

Learn the equations for this mechanism. Note the oxidation number of the vanadium changes and then changes back. It is classed as a catalyst as it returns to its original form.

Cr_2O_3 catalyst is used in the manufacture of methanol from carbon monoxide and hydrogen. CO + 2H ₂ \rightarrow CH ₃ OH	Fe is used as a catalyst in the Haber process $N_2 + 3H_2 \rightarrow 2NH_3$	
Poisoning catalysts Catalysts can become poisoned by impurities and consequently have reduced efficiency.	Poisoning has a cost implication e.g. poisoning by sulfur in the Haber process and by lead in catalytic converters cars means that catalysts lose their efficiency and may need to be replaced.	
It is important to ensure the purity of the reactants if poisoning can occur.	Leaded petrol cannot be used in cars fitted with a catalytic converter since lead strongly adsorbs onto the surface of	

the catalyst.

Homogeneous catalysis

When catalysts and reactants are in the same phase, the reaction proceeds through an intermediate species. The intermediate will often have a different oxidation state to the original transition metal. At the end of the reaction the original oxidation state will reoccur. This illustrates importance of variable oxidation states of transition metals in catalysis.

Transition metals can act as homogeneous catalysts because they can form various oxidation states. They are able to donate and receive electrons and are able to oxidize and reduce. This is because the ions contain partially filled sub-shells of d electrons that can easily lose or gain electrons.

Examples of homogeneous catalysts

Learn these 2 examples and equations carefully

Overall $S_2 U_8^2 + 21 - 2SU_4^2 + 1$	2	y re-	heeds a collision between two negative lons . Repulsion between the ions is going to hinder this – meaning high activation energy .	
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	E°+2.01V	For a substance to act as a homogenous catalyst its electrode potential must lie in-between the electrode potentials of the two reactants. It will first reduce the reactant with the more positive		
$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	E°+0.77V			
$I_2 + 2e^- \rightarrow 2I^-$	E°+0.54V	electrode potential and then in the second step oxidise the reactant with the more negative electrode potential.		
Catalysed alternative route stage 1 $S_2O_8^{2^-} + 2Fe^{2^+} \rightarrow 2SO_4^{2^-} + 2Fe^{3^+}$ stage2 21 ⁻ + 2Fe ³⁺ \rightarrow 2Fe ²⁺ + 1 ₂			Both of the individual stages in the catalysed mechanism involve collision between positive and negative ions and will have lower activation energies.	

Fe³⁺ ions can also act as the catalyst because the two steps in the catalysed mechanism can occur in any order.

Autocatalytic reaction between ethanedioate and manganate ions

The autocatalysis by Mn^{2+} in titrations of $C_2O_4^{-2-}$ with MnO_4^{--}

overall 2 MnO₄⁻ + 5 C₂O₄²⁻ + 16 H⁺ \rightarrow 2Mn²⁺ + 10 CO₂ + 8 H₂O

Catalysed alternative route

Step 1 $4Mn^{2+} + MnO_4^{-} + 8 H^+ \rightarrow 5Mn^{3+} + 4 H_2O$ **Step 2** $2Mn^{3+} + C_2O_4^{-2-} \rightarrow 2Mn^{2+} + 2 CO_2$

The initial uncatalysed reaction is **slow** because the reaction is a collision between **two negative ions** which **repel each other** leading to **a high activation energy.**

The Mn^{2+} ions produced act as an **autocatalyst** and therefore the reaction starts to speed up because they bring about the alternative reaction route with lower activation energy. The reaction eventually slows as the MnO_4^- concentration drops. This is an example of **autocatalysis** where one of the products of the reaction can catalyse the reaction.

Following the reaction rate

This can be done by removing samples at set times and titrating to work out the concentration of MnO_4^- . It could also be done by use of a spectrometer measuring the intensity of the purple colour. This method has the advantage that it **does not disrupt the reaction mixture**, using up the reactants and it leads to a much **quicker determination of concentration**.

Constructing a catalysed mechanism for a reaction

Example

The following reaction is catalysed by Co²⁺ ions in an acidic solution. $SO_3^{2-} + \frac{1}{2}O_2 \rightarrow SO_4^{2-}$. Write a mechanism for the catalysed reaction by writing two equations involving Co²⁺ and Co³⁺ ions.

Split the full equation into its two half equations SO_3^2

Add in cobalt to make two new redox equations. Making sure the oxidised cobalt equation is combined with the original reduced half equation and vice versa

equations add up to the original full non-catalysed equation.

Silver Chemistry

Ag⁺ commonly forms **linear** complexes e.g. $[Ag(H_2O)_2]^+ [Ag(NH_3)_2]^+$, $[Ag(S_2O_3)_2]^3$ and $[Ag(CN)_2]^-$ All are colourless solutions. $\begin{bmatrix} H_3N & Ag^{+} & NH_3 \end{bmatrix}^+ \\ H_2O & Ag^{+} & OH_2 \end{bmatrix}$

Silver behaves like the transition metals in that it can form complexes and can show catalytic behaviour (although it adsorbs too weakly for many examples).

Silver is unlike the transition metals in that it does not form coloured compounds and does not have variable oxidation states.

Silver complexes all have a +1 oxidation state with a full 4d subshell $(4d^{10})$. As it is $4d^{10}$ in both its atom and ion, it does not have a partially filled d subshell and so is not a transition metal by definition. It is not therefore able to do electron transitions between d orbitals that enable coloured compounds to occur.

Using silver nitrate to work out formulae of chloride containing complexes

Sometimes a compound containing a complex may have Cl⁻ ions acting as ligands inside the complex and Cl⁻ ions outside the complex attracted ionically to it. If silver nitrate is added to such a compound it will only form the silver chloride precipitate with the free chloride ions outside of the complex.

