Mechanism Summary for AS AQA Chemistry

Nucleophilic Substitution of halogenoalkanes with aqueous hydroxide ions.

$$\begin{array}{c|c}
H_{3}C \xrightarrow{\delta^{+}} & H \\
HO \overline{\vdots} & H
\end{array}$$

$$H_{3}C \xrightarrow{Br} & H_{3}C \xrightarrow{C} & C \xrightarrow{H} + :Br$$

Nucleophilic Substitution of halogenoalkanes with cyanide ions.

$$\begin{array}{c|c} H_3C \xrightarrow{\delta^+} & H_3C \xrightarrow{Br} & H_3C \xrightarrow{H} & C \xrightarrow{H} &$$

Nucleophilic Substitution of halogenoalkanes with ammonia

Elimination of halogenoalkanes with ethanolic hydroxide ions

$$CH_3 - C - H \rightarrow CH_3 - C - H + Br + H_2O$$

$$CH_3 - C - H \rightarrow CH_3 - C - H$$

Electrophilic Addition of alkenes with bromine

Electrophilic Addition of alkenes with sulfuric acid

$$H_{3}C - C - C - H \rightarrow H_{3}C - C - C - H$$

$$\downarrow \delta^{+}$$

$$\downarrow OSO_{2}OH$$

$$\downarrow OSO_{2}OH$$

$$\downarrow H$$

$$\downarrow H$$

$$\downarrow H$$

$$\downarrow OSO_{2}OH$$

$$\downarrow H$$

$$\downarrow H$$

$$\downarrow OSO_{2}OH$$

Electrophilic Addition of alkenes with hydrogen bromide

Free Radical Substitution of alkanes with bromine

STEP ONE Initiation

Essential condition: UV light

 $Br_2 \rightarrow 2Br$

STEP TWO Propagation

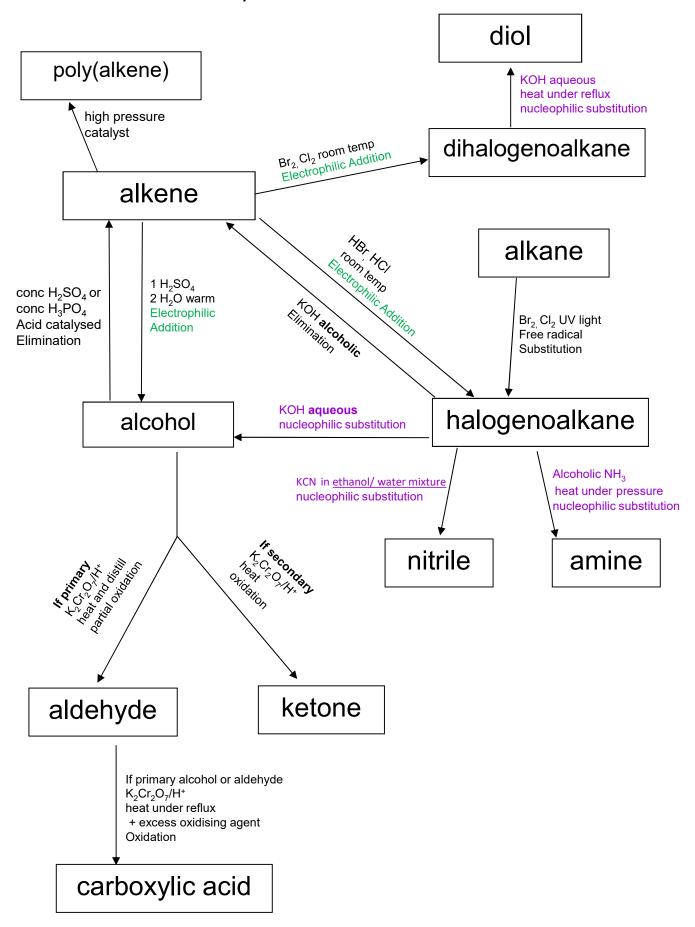
CH₃CH₃ + Br' → HBr + CH₃CH₂'

CH₃CH₂' + Br₂ → CH₃CH₂Br + Br'

STEP THREE Termination

CH₃CH₂' + Br' → CH₃CH₂Br

CH₃CH₂' + CH₃CH₂' → CH₃CH₂CH₂CH₃


Acid catalysed elimination mechanism: alcohols →alkenes

The H⁺ comes from the conc H₂SO₄ or conc H₃PO₄

Acid catalysed addition mechanism for hydration of ethene

The H⁺ comes from the conc H₃PO₄

AS Reactions- Summary

