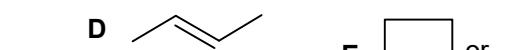
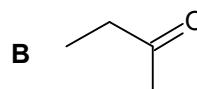


Section A: Questions using reactions and stereoisomerism



1 Isomers **A** and **B** have the molecular formula C_4H_8O

When warmed with Tollens' reagent:

A gives a silver mirror

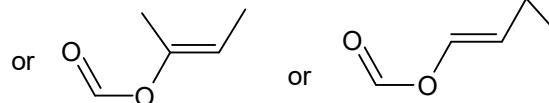
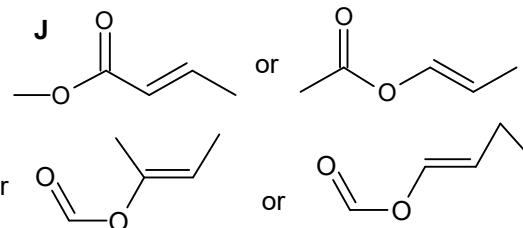
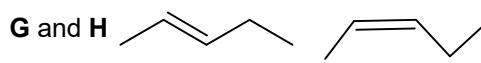
B does not give a silver mirror

Draw a possible structure for compounds **A** and **B**

2 Compounds **C**, **D** and **E** have the molecular formula C_4H_8

C and **D** decolourise bromine water but **E** does not.

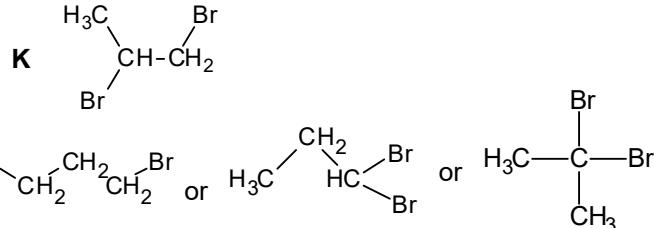
D exists as two stereoisomers but **C** does **not** show stereoisomerism.




Draw a possible structure for each of compounds **C**, **D** and **E**.

3 Compound **F** is a straight chain halogenoalkane with the molecular formula $C_5H_{11}Br$.

When compound **F** reacts with hot, ethanolic sodium hydroxide a mixture of three alkenes **G**, **H** and **I** can be formed. **G** and **H** are a pair of E-Z stereoisomers.

I does not show stereoisomerism.



Draw a possible structure for each of compounds **F**, **G**, **H** and **I**.

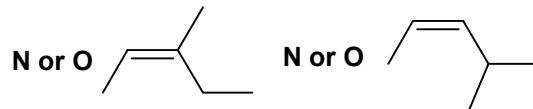
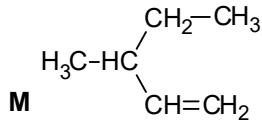
5 Compounds **K** and **L** have the molecular formula $C_3H_6Br_2$

K shows optical activity but **L** does not.

Draw a possible structure for compounds **K** and **L**.

6 Compounds **M**, **N** and **O** have the molecular formula C_6H_{12}

C is cyclohexane

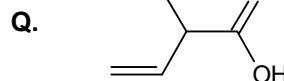
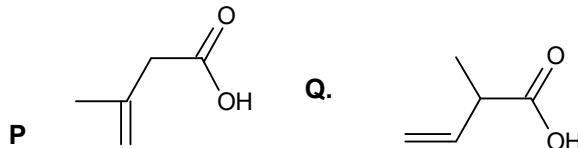


All three are branched-chain molecules and none is cyclic.

M can represent a pair of optical isomers.

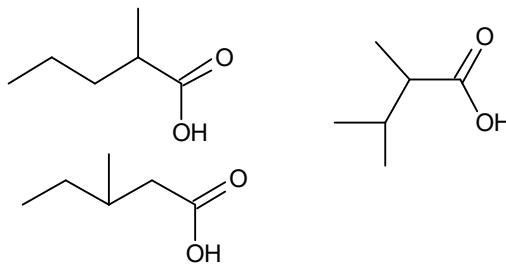
N can represent a pair of E-Z stereoisomers.

O can represent another pair of E-Z stereoisomers different from **N**.

Draw a possible structure for each of compounds **M**, **N** and **O**.



7 Compounds **P** and **Q** have the molecular formula $C_5H_8O_2$

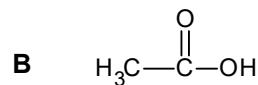
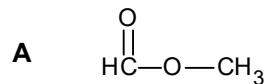
Both **P** and **Q** react with aqueous sodium carbonate to produce bubbles of carbon dioxide gas


P has a branched carbon chain and does **not** show stereoisomerism.

Q is an optically active.

Draw a possible structure for compounds **P** and **Q**.

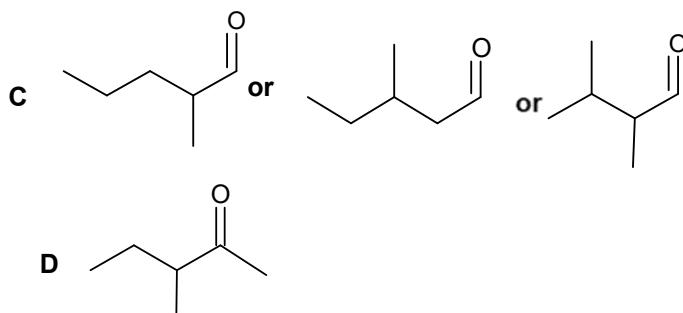
8 Compounds **R**, **S** and **T** are all isomers with the molecular formula $C_6H_{12}O_2$. They all react with aqueous sodium carbonate to produce carbon dioxide. They all have asymmetric carbon atom. Draw a possible structure for each of compounds **R**, **S** and **T**

Section B: Questions using IR data

1 Compounds **A** and **B** have the molecular formula $C_2H_4O_2$

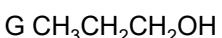
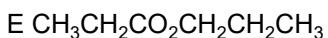
Each has an absorption in its infra-red spectrum at about 1700 cm^{-1} but only **B** has a broad absorption at 3350 cm^{-1}


Draw a possible structure for compounds **A** and **B**

2 Compounds **C** and **D** have the molecular formula $C_6H_{12}O$

Each exists as a pair of optical isomers and each has an absorption at about 1700 cm^{-1} in its infrared spectrum. **C** forms a silver mirror with Tollens' reagent but **D** does not.

Draw a possible structure for compounds **C** and **D**.

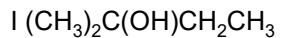
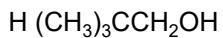



3 Compound **E**, $C_6H_{12}O_2$, is a neutral compound and is formed by the reaction between compounds **F** and **G** in the presence of a small amount of concentrated sulfuric acid.

F and **G** can both be formed from propanal by different redox reactions.

F has an absorption in its infra-red spectrum at 1750 cm^{-1} .

Draw a possible structure for compounds **E**, **F** and **G**.

4 Isomers **H** and **I** have the molecular formula $C_5H_{12}O$. Both **H** and **I** have broad absorptions in the region $3230 - 3550\text{ cm}^{-1}$

H reacts with acidified potassium dichromate but does **not** react with concentrated sulfuric acid

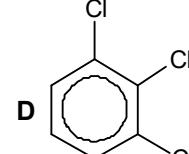
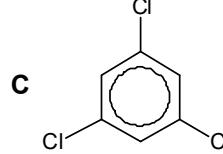
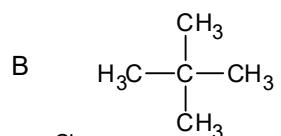
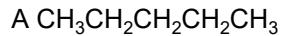
I does **not** react with acidified potassium dichromate but reacts with concentrated sulfuric acid

Draw a possible structure for compounds **H** and **I**

Section C: Questions using NMR data – number of peaks

1 Compounds **A** and **B** have the molecular formula C_5H_{12}

In their 1H NMR spectra, **A** has three peaks and **B** has only one.

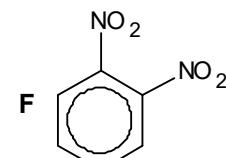
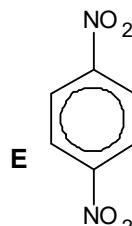




Draw the structures for compounds **A** and **B**.

2 Compounds **C** and **D** both have the molecular formula $C_6H_3Cl_3$

C has two peaks in its ^{13}C NMR spectrum

D has four peaks in its ^{13}C NMR spectrum

Draw the structures for compounds **C** and **D**.

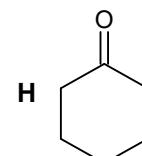
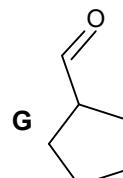



3 Compounds **E** and **F** have the molecular formula $C_6H_4N_2O_4$ and both are dinitrobenzenes.

E has two peaks in its ^{13}C NMR spectrum.

F has three peaks in its ^{13}C NMR spectrum.

Draw the structures for compounds **E** and **F**.

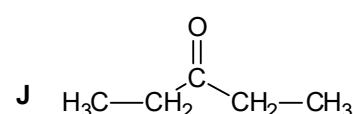
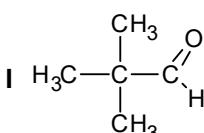


4 **G** and **H** are cyclic compounds with the molecular formula $C_6H_{10}O$.

Both have four peaks in their ^{13}C NMR spectra.

Each has an absorption at about 1700 cm^{-1} in their infrared spectra.

G forms a silver mirror with Tollens' reagent but **H** does not.

Draw the structures for compounds **G** and **H**.

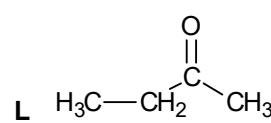
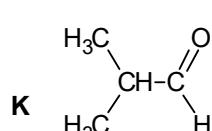



5 Compounds **I** and **J** have the molecular formula $C_5H_{10}O$.

Both have two peaks in their 1H NMR spectra.

I forms a silver mirror with Tollens' reagent but **J** does not.

Draw the structures for compounds **I** and **J**.

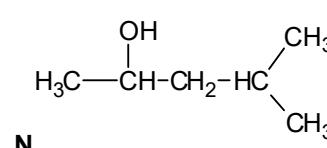
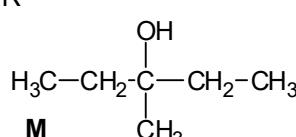


6 Compounds **K** and **L** have the molecular formula C_4H_8O

K gives a silver mirror with Tollens' reagent but **L** does not

K and **L** both have an absorption at about 1700 cm^{-1} in their infrared spectra

K has three peaks and **L** has four peaks in their ^{13}C NMR spectra:

Draw the structures for compounds **K** and **L**.

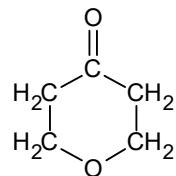


7 Compounds **M** and **N** are alcohols with the molecular formula $C_6H_{14}O$

M has four peaks and **N** has six peaks in their 1H NMR spectra

M does not react with acidified potassium dichromate(VI)

N exists as optical isomers.

Draw the structures for compounds **M** and **N**.


8 Compound **O** has the molecular formula $C_5H_8O_2$

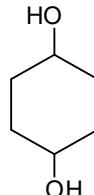
O is a cyclic compound.

O has an absorption at about 1700 cm^{-1} in its infrared

spectra and has two peaks in its 1H NMR spectrum.

Draw the structure for compound **O**.

9 Compound **P** is a cyclic compound with the molecular formula $C_6H_{12}O_2$

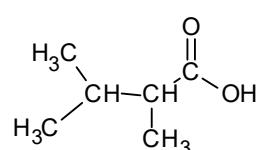

The infrared spectrum of compound **P** does not show an absorption in

the region $1680\text{--}1750\text{ cm}^{-1}$ but does have an absorption at 3270 cm^{-1}

Compound **P** has two peaks in its ^{13}C NMR spectrum and three peaks

in its 1H NMR spectrum.

Draw the structure of compound **P**.

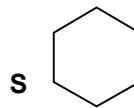
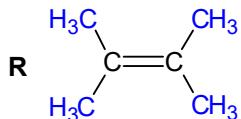


10 Compound **Q** has the molecular formula $C_6H_{12}O_2$

Compound **Q** reacts with aqueous sodium carbonate to produce carbon dioxide.

Compound **Q** has a chiral centre and has five peaks in its ^{13}C NMR spectrum.

Draw the structure for compound **Q**.

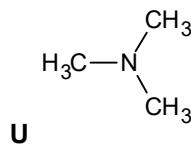
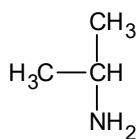



11 Compounds **R** and **S** have the molecular formula C_6H_{12} .

Both have only one peak in their 1H NMR spectra.

R reacts with aqueous bromine but **S** does not.

Draw the structures for compounds **R** and **S**.

12 Isomers **T** and **U** have the molecular formula C_3H_9N

T has absorptions in the $3350\text{--}3450\text{ cm}^{-1}$ region of their infrared spectra but **U** has no absorptions at wavenumbers greater than 3100 cm^{-1}

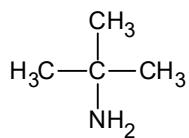
Compound **T** has three peaks in its 1H NMR spectra and **U** has one peak.

Draw the structures for compounds **T** and **U**.

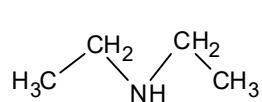
T

U

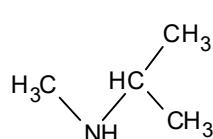
13 Compounds **W**, **X**, **Y**, and **Z** have the molecular formula $C_4H_{11}N$

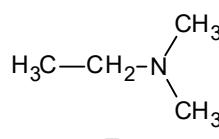

W is a primary amine and has two peaks in its 1H NMR

spectrum.


X and **Y** are secondary amines. In their ^{13}C NMR spectra, **X** has two peaks and **Y** has three.

Z is a tertiary amine.

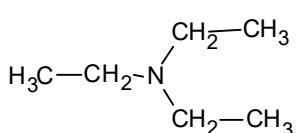

Draw a possible structure for compounds **W**, **X**, **Y**, and **Z**.


W

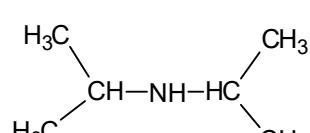
X

Y

Z


14 Compounds **A** and **B** have the molecular formula $C_6H_{15}N$

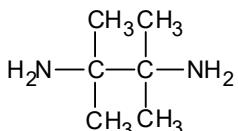
A is a tertiary amine with two peaks in its 1H NMR


spectrum.

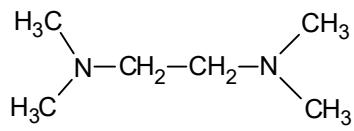
B is a secondary amine with three peaks in its 1H NMR spectrum.

Draw the structures of **A** and **B**.

A



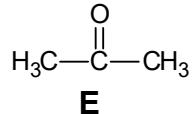
B


15 Compounds **C** and **D** have the molecular formula $C_6H_{16}N_2$.
C contains two primary amine groups and has two peaks in its ^{13}C NMR spectrum.

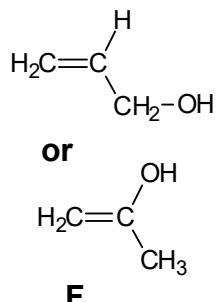
D contains two tertiary amine groups and has two peaks in its ^{13}C NMR spectrum.

Draw a structure for compounds **C** and **D**.

C


D

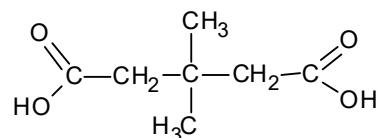
16 Compounds **E** and **F** have the molecular formula C_3H_6O .


E has an absorption at 1715 cm^{-1} in its infrared spectrum and has one peak in its 1H NMR spectrum.

F has absorptions at 3300 cm^{-1} and at 1645 cm^{-1} in its infrared spectrum and does **not** show *E*–*Z* isomerism.

Draw a possible structure for compounds **E** and **F**.

E


F

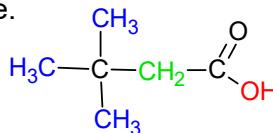
17 Compound **G** has molecular formula $C_7H_{12}O_4$.

1 mol of **G** reacts exactly with 2 mol of sodium hydroxide.

G has four peaks in its ^{13}C NMR spectrum and three peaks in its 1H NMR spectrum.

Suggest a structure for **G**

G

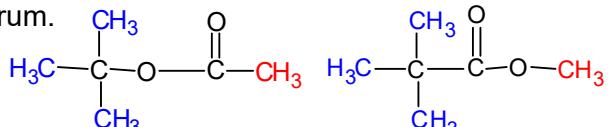

Section D: Questions with ^1H NMR splitting, integration ratio and shift data

1 Compound **A** has the molecular formula $\text{C}_6\text{H}_{12}\text{O}_2$

Compound **A** reacts with aqueous sodium carbonate to produce carbon dioxide.

Compound **A** has three singlet peaks in its ^1H NMR spectrum.

Draw the structure for compound **A**.

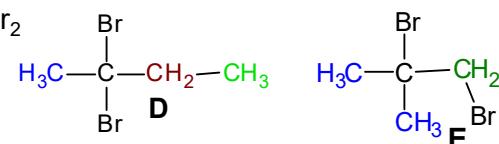


2 Compounds **B** and **C** are esters with the molecular formula $\text{C}_6\text{H}_{12}\text{O}_2$.

Both **B** and **C** have only two peaks in their ^1H NMR spectrum.

The integration ratio for both **B** and **C** is 3:1

Draw possible structures for compounds **B** and **C**.



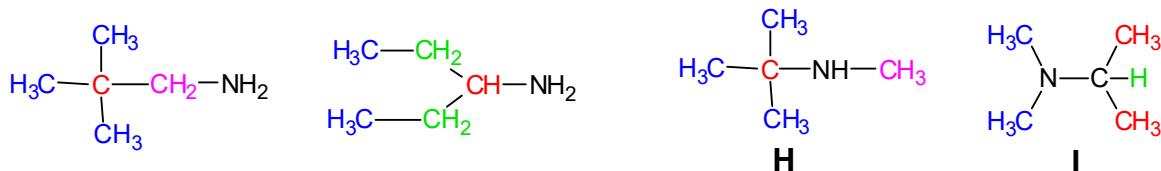
3 Compounds **D** and **E** both have the molecular formula $\text{C}_4\text{H}_8\text{Br}_2$

D has a singlet, a triplet and a quartet in its ^1H NMR spectrum.

E has two singlets in its ^1H NMR spectrum.

Draw the structures for compounds **D** and **E**.

4 Compounds **F**, **G**, **H** and **I** have the molecular formula $\text{C}_5\text{H}_{13}\text{N}$.


F, **G**, and **H** all have 3 peaks in their ^{13}C NMR spectra.

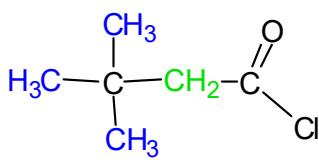
F and **G** are primary amines

H is a secondary amine.

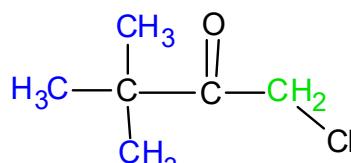
I is a tertiary amine. Its ^1H NMR spectrum has three peaks. One of the peaks is a doublet.

Draw a possible structure for compounds **F**, **G**, **H** and **I**.

5 Compounds **J** and **K** have the molecular formula $\text{C}_6\text{H}_{11}\text{OCl}$


J and **K** both have an absorption at about 1700 cm^{-1} in their infrared spectra.

J and **K** each have two singlet peaks only in their ^1H NMR spectra.


In both spectra the integration ratio for the two peaks is 2:9

Draw the structures for compounds **J** and **K**.

Suggest which compound would react more vigorously with water.

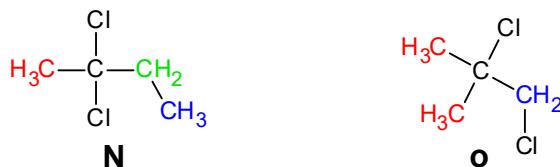
Acyl chloride reacts faster with water

6 Compounds **L** and **M** have the molecular formula $C_3H_6O_2$

L effervesces with aqueous sodium hydrogencarbonate but **M** does not.

L and **M** both have a quartet, a triplet and a singlet peak in their 1H NMR spectra.

Draw the structures of compounds **L** and **M**.



7 Compounds **N** and **O** have the molecular formula $C_4H_8Cl_2$

Compound **N** has a 1H NMR spectrum which only contains a singlet, a triplet and a quartet with an integration ratio of 3:3:2 respectively.

Compound **O** has a 1H NMR spectrum which only contains two singlets with an integration ratio of 3:1.

Draw the structures of compounds **N** and **O**.

8 Compounds **P** and **Q** have the molecular formula $C_4H_8O_2$

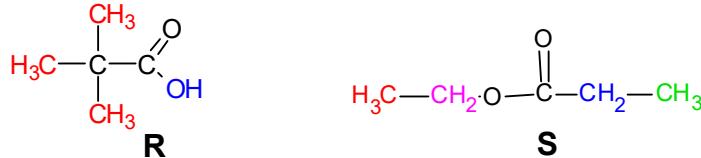
P and **Q** both have strong absorptions in the $1700-1750\text{ cm}^{-1}$ region.

Neither **P** and **Q** react with aqueous sodium carbonate.

In their 1H NMR spectra, **P** has a quartet at $\delta = 2.3$ ppm and **Q** has a quartet at $\delta = 4.1$ ppm.

Draw the structures of compounds **P** and **Q**

9 Compounds **R** and **S** have the molecular formula $C_5H_{10}O_2$


R and **S** both have strong absorptions in the $1700-1750\text{ cm}^{-1}$ region

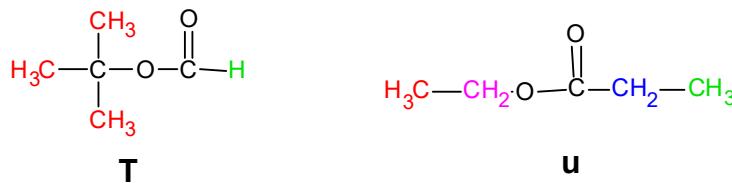
R effervesces with aqueous sodium hydrogencarbonate but **S** does not.

Compound **R** has a 1H NMR spectrum which has two singlets with an integration ratio 9:1

Compound **S** has a 1H NMR spectrum which has two triplets and two quartets with integration ratio 3:3:2:2

Draw the structures of compounds **R** and **S**

10 Compounds **T** and **U** have the molecular formula $C_5H_{10}O_2$


T and **U** both have strong absorptions in the $1700-1750\text{ cm}^{-1}$ region.

Neither **T** and **U** react with aqueous sodium carbonate.

The 1H NMR spectrum of **T** consists of two singlets

The 1H NMR spectrum of **U** consists of two quartets and two triplets.

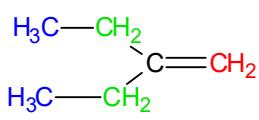
Draw the structures of compounds **T** and **U**

11 Compounds **V**, **W** and **X** have the molecular formula C_6H_{12}

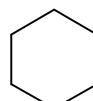
V and **W** have an absorption in their infra-red spectrum at about 1650 cm^{-1} and neither shows E-Z stereoisomerism.

X has no absorptions between 1500 and 2900 cm^{-1}

The 1H NMR spectrum of **V** consists of one singlet.


The 1H NMR spectrum of **W** consists of a singlet, a triplet and a quartet.

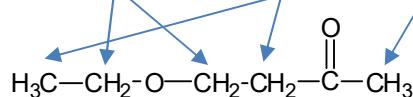
The 1H NMR spectrum of **X** only has one peak


Draw a structure for compounds **V**, **W** and **X**

V

W

X


Section E: Questions where reasoning is needed

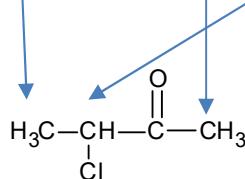
1 Compound **A** has the molecular formula of $C_6H_{12}O_2$

The table shows information about the 1H NMR spectrum for compound **A**

Chemical shift δ / ppm	3.8	3.5	2.6	2.2	1.2
Integration ratio	2	2	2	3	3
Splitting pattern	triplet	quartet	triplet	singlet	triplet

Deduce the structure of compound **A** and explain your reasoning

2 Compound **B** has the molecular formula C_4H_7ClO .


It does not produce misty fumes when added to water.

The infra-red spectrum of **B** contains a major absorption at 1724 cm^{-1} .

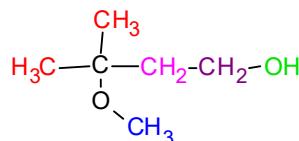
The 1H NMR spectrum of **B** shows 3 peaks. Information about the 3 peaks is given in the table.

	Peak 1	Peak 2	Peak 3
Integration value	3	3	1
Splitting pattern	doublet	singlet	quartet

Deduce the structure of compound **B** and explain your reasoning

3 The molecular formula of compound **C** is $C_6H_{12}O_2$

C has a peak at wavenumber 3500 cm^{-1} in its infra red spectrum. It does not have a peak in the range 1680 to 1750 cm^{-1}


When **C** is warmed with acidified potassium dichromate(VI) a green solution is formed.

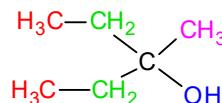
The ^1H NMR spectrum of **C** contains five peaks.

Information about the 5 peaks is given in the table.

Chemical shift δ/ppm	3.8	3.2	3.1	1.4	1.1
Integration ratio	2	3	1	2	6
Splitting patterns	triplet	singlet	singlet	triplet	singlet

Deduce the structure of compound **C** and explain your reasoning

4 The molecular formula of compound **D** is $C_6H_{14}O$

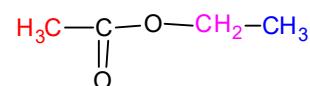

D has a peak at wavenumber 3400 cm^{-1} in its infra red spectrum. It does not have a peak in the range 1680 to 1750 cm^{-1}

The ^1H NMR spectrum of **D** contains four peaks.

Information about the four peaks is given in the table.

Chemical shift δ/ppm	1.5	1.2	1.1	0.9
Integration ratio	4	1	3	6
Splitting patterns	quartet	singlet	singlet	triplet

Deduce the structure of compound **D** and explain your reasoning.



5 The molecular formula of an ester compound **E** is $C_4H_8O_2$

The ^1H NMR spectrum of **E** contains three peaks.

Information about the three peaks is given in the table.

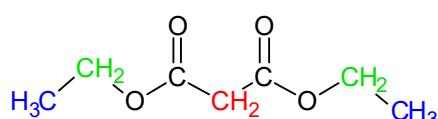
Chemical shift, δ/ppm	4.1	2	1.2
Integration ratio	2	3	3
Splitting patterns	quartet	singlet	triplet

Deduce the structure of compound **E** and explain your reasoning.

6 Compound **F** has molecular formula $C_7H_{12}O_4$

Compound **F** does not react with acidified potassium dichromate.

Compound **F** reacts with sodium hydroxide to produce ethanol as one of the products.


Compound **F** has four peaks in its ^{13}C NMR spectrum.

The ^1H NMR spectrum of **F** contains three peaks.

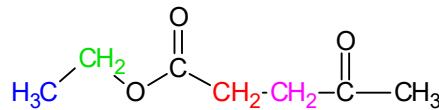
Information about the three peaks is given in the table.

Chemical shift, δ/ppm	3.9	3.4	1.3
Integration ratio	4	2	6
Splitting patterns	quartet	singlet	triplet

Deduce the structure of compound **G** and explain your reasoning.

7 Compound **G** has molecular formula $C_7H_{12}O_3$

Compound **G** has a peak in the range 1680 to 1750 cm^{-1}


Compound **G** has seven peaks in its ^{13}C NMR spectrum.

The 1H NMR spectrum of **G** contains five peaks.

Information about the five peaks is given in the table.

Chemical shift δ /ppm	4.10	2.60	2.56	2.19	1.26
Integration ratio	2	2	2	3	3
Splitting patterns	quartet	triplet	triplet	singlet	triplet

Deduce the structure of compound **G** and explain your reasoning.

