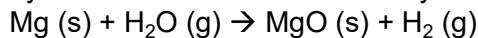


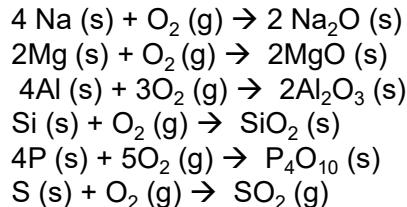
2.4 Periodicity of Period 3


Trends in the reactions of the elements with water, limited to Na and Mg

Learn the equations

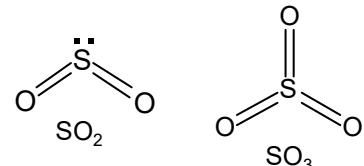
Sodium reacts with cold water. It fizzes around on surface etc.

Magnesium reacts very slowly with cold water to form the hydroxide but reacts more readily with **steam** to form the oxide


Trends in the reactions of the elements Na, Mg, Al, Si, P and S with oxygen

The elements all react with oxygen to form oxides.

Sodium burns with a **yellow flame** to produce a **white solid**.


Mg, Al, Si and P burn with a **white flame** to give **white solid** smoke.

S burns with a **blue flame** to form an acidic **choking gas**.

You should be able to write these equations.

Learn the formulae of the oxides

A survey of the properties of the oxides of Period 3 elements

Understand the link between the physical properties of the highest oxides of the elements Na → S and their structure and bonding.

Ionic oxides

The metal oxides (Na_2O , MgO , Al_2O_3) are ionic. They have high melting points. They have **ionic giant lattice structures**: strong electrostatic forces of attraction between oppositely charged ions : higher melting point. They are ionic because of the large electronegativity difference between metal and O.

The increased charge on the cation makes the ionic forces stronger (bigger lattice enthalpies of dissociation) going from Na to Al so leading to increasing melting points.

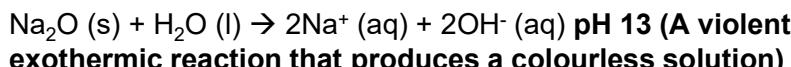
Al_2O_3 is ionic but does show some covalent character. This can be explained by the electronegativity difference being less big or alternatively by the small aluminium ion with a high charge being able to get close to the oxide ion and distorting the oxide charge cloud.

To prove that the above compounds contain ions experimentally - **melt** the solids and show they conduct electricity.

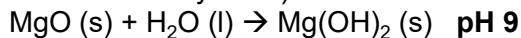
Macromolecular oxides

SiO_2 is macromolecular: It has many very strong covalent bonds between atoms. High energy needed to break the many strong covalent bonds – very high melting + boiling point

Simple molecular oxides:


P_4O_{10} , SO_2 are simple molecular with weak intermolecular forces between molecules (Van der Waals + permanent dipoles) so have lower mp's. They are covalent because of the small electronegativity difference between the non-metal and O atoms. P_4O_{10} is a molecule containing 4P's and 10 O's. As it is a bigger molecule and has more electrons than SO_2 it will have larger Van der Waals forces between molecules and a higher melting point.

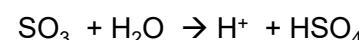
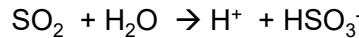
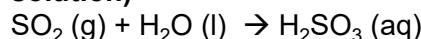
Aluminium metal is protected from corrosion in moist air by a thin layer of aluminium oxide. The high lattice strength of aluminium oxide and its insolubility in water make this layer impermeable to air and water.


The reactions of the oxides of the elements $\text{Na} \rightarrow \text{S}$ with water

Learn the equations !

Metal ionic oxides tend to react with water to form hydroxides which are alkaline.

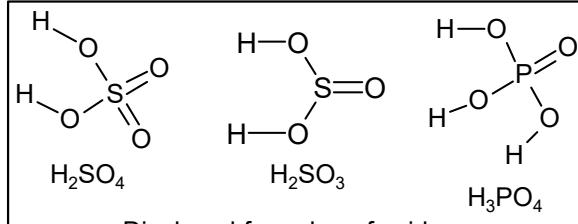
The ionic oxides are basic because the oxide ions accept protons to become hydroxide ions in this reaction (acting as a Bronsted-Lowry base)

$\text{Mg}(\text{OH})_2$ is only slightly soluble in water as its lattice is stronger so fewer free OH^- ions are produced and so lower pH.

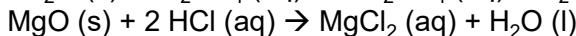
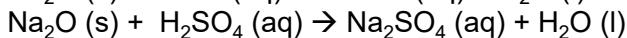
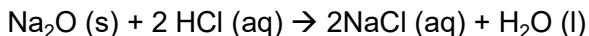
Know the change in pH of the resulting solutions across the period.

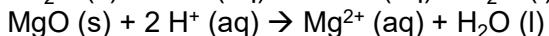
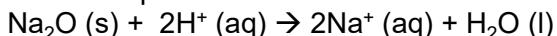
Al_2O_3 and SiO_2 **do not dissolve** in water because of the high strength of the Al_2O_3 ionic lattice and the SiO_2 macromolecular structure, so they give a neutral **pH 7**


The non-metal, **simple molecular**, covalent, oxides react with water to give acids.

Equations showing formation of ions in solution

The trend is the **ionic metal oxides** show **basic** behaviour and the **non-metal covalent** oxides show **acidic** behaviour.

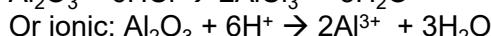
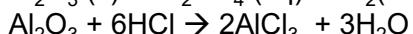
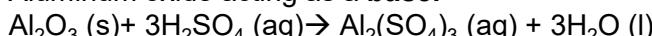



The slightly intermediate nature of the bonding in aluminium oxide is reflected in its amphoteric behaviour: it can act as both a base and an acid.



Displayed formulae of acids

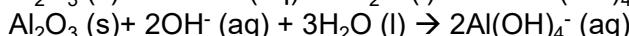
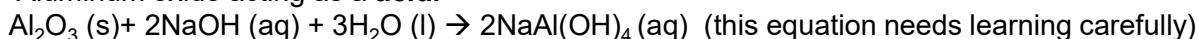
Acid base reactions between period 3 oxides and simple acids and bases.

The **basic oxides** react with acids to make salts.

Or ionic equations

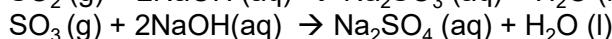
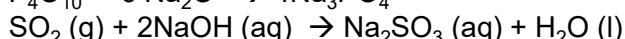




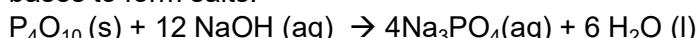
Rather than learning the equations by rote, learn the pattern. Most follow the pattern **acid + base \rightarrow salt + water**
Know the charges on the ions e.g. PO_4^{3-} , SO_4^{2-}



Amphoteric oxides

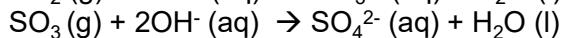
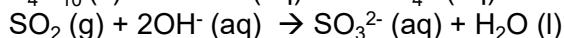
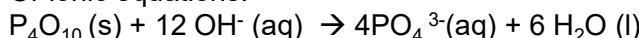
Aluminium oxide can act as both an acid and an alkali and is therefore called amphoteric.

Aluminum oxide acting as a **base**.

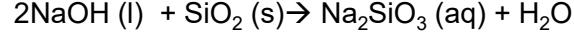





Aluminum oxide acting as a **acid**.

Be careful for whether the question is asking for an ionic equation or a full one


The other simple molecular acidic oxides react with bases to form salts.

Or ionic equations:

SiO_2 has a **giant covalent structure** with very strong bonds. This stops SiO_2 dissolving or reacting with water and weak solutions of alkali. It will, however, react with very concentrated NaOH

It is still classed as an acidic oxide.